See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

2013 - Allx

Demonstration of Polymer Microring Resonator for Optical Biosensor using COMSOL

Mohd Haziq M.S.[1]
Mohd Hazimimin Mohd Salleh[2]

[1]Department of Information Systems, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia

[2]Department of Physics, Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia

In this paper, we use a COMSOL Multiphysics® model to demonstrate the potential use of polymer microring resonator structures for optical biosensing applications. When the refractive index of the area surrounding the microring resonator changes, there is a shift in the resonance ... Read More

Optoelectronic Simulation of An Organic Bulk Heterojunction Solar Cell with COMSOL

Koh Wee Sing[1]
[1]Institute of High Performance Computing, Agency for Science, Technology, and Research, Singapore, Singapore

In this project, we developed a 3D optoelectronic model for organic bulk-heterojunction solar cells. We validated our COMSOL Multiphysics® model with experimental data and used our simulation to predict the optical and electrical characteristics of a 3D plasmonic OPV device. This work ... Read More

Numerical and Experimental Study of Water Drop Movement Subjected to an Air Stream in Porous Medium

A. Yekta[1], D. Stemmelen[1], S. Leclerc[1]
[1]LEMTA,UMR 7563 CNRS - Université de Lorraine, 54518 VANDOEUVRE-LES-NANCY France

Considering a liquid drop in relative movement with respect to the air flow at uniform velocity, the liquid will be driven to the surface by the viscous friction. Internal vortices will appear inside the drop. This problem has already been studied in fluid mechanics and is well known as ... Read More

Some Commonly Neglected Issues Which Affect DEP Applications

G. Zhang[1], V. Pandian[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

Dielectrophoresis (or DEP) has been exploited for various micro and nano fluidics applications like patterning, sorting and separation. However, there are several commonly neglected issues in quantifying DEP forces. Such negligence could potentially lead to wrong DEP force predictions ... Read More

Actively Controlled Ionic Current Gating In Nanopores

G. Zhang[1], S. Bearden[1]
[1]Clemson University, Clemson, SC, USA

It is necessary to understand and control nanopore behavior in order to develop biosensors for a variety of applications including DNA sequencing. The fluidics of nanopore devices we fabricated exhibits a range of interesting phenomena, such as enhanced conductance and current ... Read More

Analysis of Dielectrophoretic Force by Using COMSOL

Taewoo Lee[1]
[1]Department of Biomedical Engineering, Yonsei University, Seoul, South Korea

Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. In this research, we analyze dielectrophoretic (DEP) force using a geometry containing two electrodes, one with SiO2 and one without, with a gap ... Read More

Optical Modeling of Organic Solar Cells Using the COMSOL

Jungho Kim[1]
[1]Department of Information Display, Kyung Hee University, Seoul, South Korea

A solar cell offers a potential solution to energy shortage problems by converting sunlight into electrical power. Organic solar cells (OSCs) are low-cost and versatile, but also tend to be low-efficiency and short-lasted. Three macroscopic parameters determine their power-conversion ... Read More

COMSOL Multiphysics for the Designs and Applications on Biomicrofluidic Chips

I-Fang Cheng[1]
[1]National Nano Device Laboratories (NDL), National Applied Research Laboratories, Taipei, Taiwan

Some types of rare pathogens can be detected and identified in human blood through a low-cost and label-free method. The On-Chip SESR identification process has a fast detection time (about 5 minutes) and a low detection limit. Discrimination of a species is done by sorting red blood ... Read More

Investigation of Transport Phenomena in Nanochannels and its Applications in Energy Conversion using COMSOL Multiphysics

Chih-Chang Chang[1]
[1]Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan

Well‐designed and controlled nanochannels are ideal physical modeling systems to study fluidics in a precise manner. Electrokinetics refers to transport phenomena related to the non‐electroneutral EDL, which is created to neutralize the surface charges produced on surface. Surface ... Read More

The Electrical Impedance Image Reconstruction Using COMSOL MULTIPHYSICS

Kuo-Sheng Cheng[1]
[1]Department of Biomedical Engineering, Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan

Electrical impedance tomography is a non-invasive, low-cost medical imaging technique that can be used long term without radiation hazards. We built a model of the torso, and then used COMSOL Multiphysics® to simulate applied current patterns, compute voltages, and find equi-potential ... Read More

First
Previous
1–10 of 506