AC/DC

Lexi Carver | May 16, 2014

The power electronics industry is responsible for products used by billions of people: smartphones, televisions, certain car parts, and even components in motors and household objects. With such a diverse array of applications, many design requirements are considered during the making of these products, including power and energy density, cost, and customer safety. Arkansas Power Electronics International (APEI), a USA-based company, is refining designs for power packaging to control thermal management in power electronics devices, increase efficiency, and lower cost.

Read more ⇢
Fanny Littmarck | May 15, 2014

Have you been looking for software that can solve the Testing Electromagnetic Analysis Methods (TEAM) Problem 7? We solved the problem with COMSOL Multiphysics and the AC/DC Module. Here are the results.

Read more ⇢

Article Categories

Lexi Carver | May 6, 2014

Superconductors are used in applications where high current density and magnetic fields are present — including electric generators, biomagnetic technology, and common products, such as fast digital circuits. Theoretically, an unlimited amount of current can flow through a wire made of a superconducting material. However, what happens to a superconductor as the current density exceeds critical limits? Let’s find out.

Read more ⇢

Article Categories

Alexandra Foley | April 23, 2014

Magnetic fields are fundamental forces in the universe. Without them, planetary orbits, electricity, and elementary particles could not exist. Helmholtz coils are used by scientists to generate uniform magnetic fields to study electromagnetism and its characteristics. They are used in MRI, spectroscopy, magnetoresistance measurements, and equipment calibrations. Here, we’ll look at what Helmholtz coils are, why they are important, and how can they be modeled.

Read more ⇢

Article Categories

Mark Fowler | March 21, 2014

When designing magnets, you want to save resources by using as little material as possible, while generating as large of a force as possible on the object in question. To calculate the force of a one-sided magnet, you can use COMSOL Multiphysics and the AC/DC Module.

Read more ⇢

Article Categories

Marc Fernandez Silva | March 5, 2014

Being able to compute the spatial gradients of the magnetic field or magnetic flux density is needed in areas such as radiology, magnetophoresis, and geophysics. One of the most important applications is in the design of magnetic resonance imaging machines, where it’s important to analyze not only the field strength, but also the spatial variation of the field. Today’s blog will demonstrate how to compute and plot the gradients of the magnetic field in 3D electromagnetic simulations in COMSOL Multiphysics.

Read more ⇢

Article Categories

Mark Fowler | February 24, 2014

Submarines can be detected by enemy weapon systems due to their magnetic signatures. By designing vessels with reduced magnetic signatures, detection can be avoided, but the composition and size of most submarines often make simulation difficult. COMSOL software helps you overcome this problem.

Read more ⇢

Article Categories

Fanny Littmarck | January 3, 2014

Before conducting certain blood sample analyses, researchers need to separate the red blood cell particles from the blood plasma. Using lab-on-a-chip (LOC) technology, red blood cell separation can be achieved via magnetophoresis, i.e. motion induced by magnetic fields. Since the magnetic permeability of the particles is different from the blood plasma, their trajectory can be controlled within the flow channel of the LOC device and thereby separated out from the fluid.

Read more ⇢
Laura Bowen | December 24, 2013

During snow storms or windy days, a branch might break and short-circuit a power line’s electric current as it falls. The first task of a recloser is to interrupt this short-circuit, i.e. to open or disconnect the affected overhead line from the feeding network source. The second task is to try to re-establish power after a short time by to re-closing the line, taking advantage of the fact that most of the reasons for a short-circuit of an overhead line […]

Read more ⇢

Article Categories

Magnus Olsson | December 2, 2013

When designing inductive devices, both challenges and possibilities are associated with the nonlinear behavior of ferromagnetic materials. COMSOL Multiphysics is well-adapted to the solution of highly nonlinear numerical models but high-fidelity modeling of nonlinear inductive devices also requires accurate material data. To meet this challenge, a library of 165 nonlinear magnetic materials is provided in COMSOL 4.4, bringing new powers to the design and modeling of electric motors, transformers, relays, etc. Here, we will discuss how the modeling process is […]

Read more ⇢

Article Categories

Fanny Littmarck | November 18, 2013

Joule heating is a fairly standard type of simulation for COMSOL users nowadays. It involves solving for electrical voltage and temperature fields simultaneously with highly temperature-dependent material properties. Controlling Joule heating is very important when designing and manufacturing electrical systems components. The electric protection group at manufacturing company Mersen France used to base their busbar and fuse designs on trial-and-error, but these days they turn to COMSOL Multiphysics.

Read more ⇢
1 2 3 4 5