Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Rotating Machinery 3D Tutorial

This is a tutorial how to set up electric machinery in 3D using a combination of the magnetic fields and magnetic fields no currents interfaces.

One-Sided Magnet and Plate

Permanent magnets with a one-sided flux have many uses. The one-sided flux behavior is obtained by giving the magnet a magnetization that varies in the lateral direction. This model shows this technique to model a cylindrical one-sided permanent magnet. A special technique to model thin sheets of high permeability material was used to model a thin metal plate next to the magnet. This circumvents ...

Axial Magnetic Bearing Using Permanent Magnets

Permanent magnet bearings are used in turbo machinery, pumps, motors, generators, and flywheel energy storage systems, to mention a few application areas; contactless operation, low maintenance, and the ability to operate without lubrication are some key benefits compared to conventional mechanical bearings. This model illustrates how to calculate design parameters like magnetic forces and ...

Generator in 3D

This model is a static 3D simulation of a generator having a rotor with permanent magnets. The center of the rotor consists of annealed medium carbon steel, which is a nonlinear ferromagnetic material that is saturated at high magnetic flux densities. The core is surrounded by several blocks of a permanent magnet made of samarium and cobalt, creating a strong magnetic field. The stator is made ...

Computing the Resistance of a Wire

Every electrical device has some resistance. That is, when a voltage difference is applied across any two terminals of the device, there will be a directly proportional current flow. This model demonstrates how to compute the resistance of a short section of copper wire. The convergence of the solution with respect to the mesh size is also studied.

Superconducting Wire

Superconducting materials have zero resistivity up to a certain critical current density, above which the resistivity increases rapidly. To model such a material, this model uses a PDE, General Form interface with second-order vector elements. The model was based on a suggestion by Dr. Roberto Brambilla, CESI - Superconductivity Dept., Milano, Italy.

Benchmark Electromagnetic Simulation of a Coil Using Infinite Elements

Many environments where electromagnetic phenomena are modeled are unbounded or open, meaning that the fields should extend towards infinity. The easiest approach to model such is to use infinite elements. COMSOL Multiphysics' implementation of these maps the model coordinates from the local, finite-sized domain to a stretched domain. The inner boundary of this stretched domain coincides with ...

Inductance of a Power Inductor

Power inductors are a central part of many low-frequency power applications. They are, for example, used in the switched power supply for the motherboard and all other components in a computer. Computer simulations are necessary in the design of such inductors. This model calculates the inductance from specified material parameters.

Computing the Effect of Fringing Fields on Capacitance

A typical capacitor is composed of two conductive objects with a dielectric in between them. A voltage difference applied between these objects results in an electric field between them. This electric field exists not just directly between the conductive objects, but extends some distance away, this is known as a fringing field. To accurately predict the capacitance of a capacitor, the domain ...

Electric Impedance Sensor

Electric impedance measurements are used for imaging and detection. Applications range from nondestructive testing and geophysical imaging to medical imaging. Several alternative techniques are shown to model such a system. One of them shows how to use conditional expressions to define spatially dependent material properties. Another shows how to use multiple terminals for distributed sensing ...

Quick Search