Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Degradation of DNA in Plasma

Biotechnology is a rapidly growing area in the pharmaceutical sciences. One example of a clinical application is gene therapy, where it is possible to produce proteins in vivo, using the body’s own mechanisms for protein production. Major issues in gene delivery involve the transport of plasmid DNA (pDNA) to target sites and the conversion between different forms of pDNA. This example ...

Optimization of a Catalytic Microreactor

In this application, a solution is pumped through a catalytic bed where a solute species reacts as it gets in contact with the catalyst. The purpose of this example is to maximize the total reaction rate for a given total pressure difference across the bed by finding an optimal catalyst distribution. The distribution of the porous catalyst determines the total reaction rate in the bed. A large ...

Determining the Reaction Order from Pressure-Time Data

This model shows how to use the Parameter Estimation feature in the Reaction Engineering interface to find the rate constant and reaction order for the gas phase decomposition of di-tert-butyl-peroxide.

Fine Chemical Production in a Plate Reactor

Plate reactors running under continuous conditions have emerged as candidates to replace batch reactors, primarily in fine chemicals and pharmaceuticals production. One of the advantages of the plate reactor design is that it allows for efficient temperature control of the reacting fluid. For instance, this means that the heat released from strongly exothermic reactions can be readily dissipated ...

Optimal Cooling of a Tubular Reactor

Maximizing product yield is a main task in chemical reaction engineering. This can be especially challenging if the desired product, once formed, can be consumed by further reactions. This example investigates such a series reaction as it occurs in a tubular reactor. You will start by setting up the tightly coupled mass and energy balance equations describing the reactor using predefined ...

Biosensor Design

A flow cell in a biosensor contains an array of micropillars. The concave surfaces of the pillars are coated with an active material that selectively adsorbs biomolecules in the sample stream. This application allows the user to change the design of the sensor by altering input parameters such as pillar diameter, grid spacing, and inlet velocity, and see how it affects the detection results.

Hydrocarbon Dehalogenation in a Tortuous Microreactor

Removing halogen groups from hydrocarbons is an important reaction step in several chemical processes. One application is water purification. Other examples involve organic synthesis, where the removal of halogen groups serves as a starting point for carbon-carbon coupling reactions. Typically, the carbon-halogen bond scission is activated by precious metal catalysts based on platinum or ...

Semibatch Polymerization

As reactant monomer converts into polymer chains, the density of the reacting mixture often changes notably. In this example you will look at how this effect impacts the total production of polymer in a process. The liquid phase polymerization takes place in a semibatch reactor, where two operating conditions are compared. In the first scenario, the feed of monomer to the reactor is turned off ...

Ammonia Synthesis PFR

This example demonstrate the modeling of a plug flow reactor for the synthesis of ammonia in the Haber-Weiss process. The catalytic reactor in this process operates under non-isothermal conditions, where temperature and pressure varies substantially along the length of the reactor, in addition to the variation in composition.

Tank Series with Feedback Control

This example illustrates how to set up and solve a tank-in-series model in 0D using the Reaction Engineering interface. The model treats a series of three consecutive tank reactors. A feedback loop continuously adjusts the inlet concentration of the first tank to keep the concentration at the outlet of the last reactor close to a set level.