Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Turbulent Flow Through a Shell-and-Tube Heat Exchanger

This model studies a part of a shell-and-tube heat exchanger where hot water enters from above. The cooling medium flows through the tubes that, in this model, impose a constant temperature at the walls. Furthermore, the tubes are assumed to be made of stainless steel and the heat flux is also modeled through them. The purpose of the model is to show the coupling between the k-omega turbulence ...

Thermal Contact Resistance Between an Electronic Package and a Heat Sink

This example reproduces parts of the study of Ref. 1 on the thermal contact resistance at the interface between a heat sink and an electronic package. Eight cooling fins equip the cylindrical heat sink and contact is made at the radial boundaries of the package. The efficiency of the device depends on the cooling of the fins and the heat transfer from the package to the heat sink. This model ...

Cavity Radiation

This model shows how to build and solve a radiative heat transfer problem using the Heat Transfer interface. In particular, this 2D model illustrates the use of the surface-to-surface radiation feature. In this model, three surfaces form a cavity. Heat flux is set at two outer boundaries, while temperature is set on the third. The model's simple geometry, allows a comparison of results ...

Simulation of Multiphysics Contact in a Power Conductor

This model illustrates how to implement a multiphysics contact. It models the thermal and electrical behavior of two contacting parts of a switch. The electrical current and the heat flow from one part to the other only through the contact surface. The contact switch device has a cylindrical body and plate hook shapes at the contact area. There, the thermal and electrical apparent resistances are ...

Radiative Heat Transfer in Finite Cylindrical Media

This model uses the Discrete-Ordinates method (DOM) to solve a 3D radiative transfer problem in an emitting, absorbing, and linear-anisotropic scattering finite cylindrical medium. Using the S6 quadrature of DOM leads to faster and more accurate results, which are needed in combined modes of heat transfer. The calculated incident radiation and heat fluxes agree well with published results ...

Copper Layer on Silica Glass

In this time-dependent model, a silica block of glass, coated with a thin copper layer is subjected to a heat flux. Copper is a highly conductive material, while the silica glass is of poor thermal conductivity, which sets up an highly-varied temperature differential. The model must therefore account for a highly conductive layer. This is done, using a the Highly Conductive Layer feature in ...

Heat Conduction in a Cylinder

This model how to build and solve a conductive heat transfer problem using the Heat Transfer interface. The model, taken from a NAFEMS benchmark collection, shows an axisymmetric steady-state thermal analysis. As opposed to the NAFEMS benchmark model, we use the temperature unit kelvin instead of degrees Celsius for this model.

Condensation Detection in an Electronic Device

This example simulates the thermodynamical evolution of moist air in an electronic box with the aim of detecting whether condensation occurs when the external environment properties change. The model imports measured data for the air temperature, pressure, and water vapor concentration. For the first part of the simulation, the water vapor concentration is considered to be homogeneous inside the ...

Thermophoresis

When a temperature gradient in a gas exists, suspended particles will tend to move from regions of high temperature to low. The force which produces this effect is called the thermophoretic force. Gas molecules colliding with a particle from the hot side have a higher velocity than the cold side, which results in a net force towards cold areas. This effect can be exploited to create thermal ...

Heating of a Slab

This simple example covers the heating of a finite slab and how the temperature varies with time. We will set up the problem in COMSOL Multiphysics after which we compare the solution to the analytical solution.

Quick Search