Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Computing Q-Factors and Resonant Frequencies of Cavity Resonators

A classic benchmark example in computational electromagnetics is to find the resonant frequency and Q-factor of a cavity with lossy walls. Here, models of rectangular, cylindrical, and spherical cavities are shown to be in agreement with analytic solutions.

Heating Circuit

Small heating circuits find use in many applications. For example, in manufacturing processes they heat up reactive fluids. The device used consists of an electrically resistive layer deposited on a glass plate. The layer causes Joule heating when a voltage is applied to the circuit. The layer’s properties determine the amount of heat produced. This multiphysics example simulates the ...

Solar Panel in Periodic Flow

The coupling of fluid flow and structural mechanics is a challenging problem for several reasons. The fluid flow problem usually requires a specific kind of mesh that is not appropriate for structural mechanics. Additionally, one may want to include geometric features in the structural model that are not significant for the fluid flow model. This model computes the structural stresses and ...

Buoyancy Flow of Free Fluids

This model couples the Navier Stokes equations and the heat transfer equations to examine density driven flow of free fluids. Here the fluid is in a square cavity with a heated wall. The buoyancy force is a Boussinesq term added to the Navier-Stokes equations. The equation is nondimensionalized, so the material coefficients are set up using Rayleigh and Prandtl numbers. The parametric solver ...

Inkjet Nozzle - Level Set Method

Inkjet printers are attractive tools for printing text and images because they combine low cost and high resolution with acceptable speed. Designers can vary several parameters to modify a printer’s performance. Simulations can be useful to improve the understanding of the fluid flow and to predict the optimal design of an inkjet for a specific application. Although initially invented to ...

Sloshing Tank

Transport of large quantities of fluid can happen in unstable environments. A perfect example is an oil tanker on the high seas. This model uses ALE for an incompressible Navier-Stokes problem with a free surface. This models the fluid with its original mesh, but allows the mesh to deform according to the fluid’s ‘deformation’. This requires that the position of the mesh and its nodes ...

Microstrip Patch Antenna

The microstrip patch antenna is used in a wide range of applications since it is easy to design and fabricate. The antenna is attractive due to its low-profile conformal design, relatively low cost and very narrow bandwidth. It is known that the antenna impedance will be higher than an accepted value if fed from the edge, and lower if fed from the center. Therefore, an optimum feed point ...

Dipole Antenna

The dipole antenna is one of the most straightforward antenna configurations. It can be realized with two thin metallic rods that have a sinusoidal voltage difference applied between them. The length of the rods is chosen such that they are quarter wavelength elements at the operating frequency. Such an antenna has a well known torus-like radiation pattern.

Magnetic Brake

A magnetic brake consists of a permanent magnet, which induces currents in a rotating copper disk. The resulting eddy currents interact with the magnetic flux to produce Lorentz forces and subsequently a braking torque. This 3D problem is solved using a stationary formulation for the electromagnetic field coupled to an ordinary differential equation for the rotational rigid body dynamics. ...

Piezoacoustic Transducer

A piezoelectric transducer can be used either to transform an electric current to an acoustic pressure field or, the opposite, to produce an electric current from an acoustic field. These devices are generally useful for applications that require the generation of sound in air and liquids. Examples of such applications include phased array microphones, ultrasound equipment, inkjet droplet ...