Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Isolator Thickness Effect on Galvanic Corrosion Mitigation

The use of Aluminum (Al) isolator is a commonly employed mitigation strategy for galvanic corrosion between magnesium alloy (Mg) and mild steel (MS). The present model demonstrates the effect of Al isolator thickness on galvanic corrosion severity using a parametric study. The electrode kinetics is implemented here using the experimental polarization data available in literature.

Rotating Channel Benchmark

A lab-on-a-chip platform can be realized on a rotating disc by designing channels and other features to use the Coriolis or centrifugal forces to manipulate the flow. These forces are controlled by changing the angular velocity of the disc, so the platform is programmed by using a controlled sequence of angular velocities. In a microchannel, the centrifugal force induces a parabolic flow profile ...

Thermal Drift in a Microwave Filter Cavity

Microwave filters are used to eliminate unwanted frequency components in the output from microwave transmitters. They are typically inserted between a power amplifier and an antenna. The amplifiers are nonlinear and produce harmonics that must be eliminated with filters that have a rather narrow passband. Due to high power loads but also possibly from harsh environmental conditions (such as a ...

Shift into gear

This model demonstrates the ability to simulate Multibody Dynamics in COMSOL. It comprises a multilink mechanism that is used in an antique automobile as a gearshift lever. It was created out of curiosity to find out how large forces are on the individual components. The model uses flexible parts, i.e. the Structural Mechanics Module was used along with the Multibody Dynamics Module.

Buoyancy–driven μPCR for DNA Amplification

Polymerase chain reaction (PCR) is one of the most effective methods in molecular biology, medical diagnostics, and biochemical engineering in amplifying a specific sequence of DNA. There has been a great interest in developing portable PCR-based lab-on-a-chip systems for point-of-care applications and one strategy that seems very promising is natural convection-based PCR. This model studies ...

Finite Well

This model defines transient flow to a well of finite radius in a confined aquifer. The results from this analysis are compared to the well known Theis solution for flow to a point well. What distinguishes this model from the Theis problem is the well geometry. Since the analytic solution describes the well as a point source which produces unphysical results inside the wellbore. The COMSOL ...

Shell Conduction

This model simulates a static analysis of heat conduction in a thin conductive shell. This is a benchmark model where the result is compared with a NAFEMS benchmark solution.

Sensitivity Analysis of a Communication Mast Detail

The example Stiffness Analysis of a Communication Mast’s Diagonal Mounting in the COMSOL Multiphysics Model Library shows how you can modify a 3D CAD model to improve its performance. In that case, the applied changes were based solely on the analyst’s experience with similar structures. A senior design engineer can sometimes reach acceptable performance after analyzing only a handful of ...

The Black-Scholes Equation

The Black-Scholes equation, computes the value u of a European stock option. Black-Scholes derived an analytical expression for the solution to this problem. However, the formula works only for certain cases; for instance, you cannot employ it when sigma and r are functions of x and t. Here, sigma denotes the volatility, r the continuous compounding rate of interest, and x the underlying asset ...

Critical Frequencies for a Rotor

The rotor in an electric motor is analyzed. In the design of a motor it is important that no eigenfrequencies for the rotor lie within the operating interval of the revolution speed (in revolutions / second) for the motor. If the eigenfrequencies of the rotor lie in this interval then this shortens the engines lifetime, and can sometimes even lead to dysfunction and breakdown. This 3d model of ...

Quick Search