Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

The Blasius Boundary Layer

The incompressible boundary layer on a flat plate in the absence of a pressure gradient is usually referred to as the Blasius boundary layer. The steady, laminar boundary layer developing downstream of the leading edge eventually becomes unstable to Tollmien-Schlichting waves and finally transitions to a fully turbulent boundary layer. Due to its fundamental importance, this type of flow has ...

Electrode Growth Next to an Insulator

This example shows how to model secondary current distribution and electrode growth with a moving geometry. To avoid numerical instabilities, a seed layer is introduced in the initial geometry to obtain a right angle at the edge between the growing electrode and the insulator.

Eigenmodes of a Two-Speaker System in a Living Room

The placement of furniture in a living room affects the acoustic characteristics of a room. This model returns the eigenfrequencies around 90 Hz and the response at any point in the living room for frequencies up to 500 Hz. It includes absorbing and damping characteristics from some of the furniture.

Thermal Bridges in Building Construction—2D Square Column

This example studies heat transfer in a square column. Cold and hot temperature conditions are applied to the boundaries. Due to the symmetry of the problem, the geometry is simplified to half of the square. The temperature field is compared with the analytic data. This example corresponds to the case 1 described in the European standard EN ISO 10211:2007 for thermal bridges in building ...

An Electrokinetic Valve in a Microchannel System

This model presents an example of pressure driven flow and electrophoresis in a microchannel system. The modeled device is often used as an electrokinetic sample injector in biochips with well-defined sample volumes of dissociated acids and salts. The model presents a study of a pinched injection cross valve during the focusing, injection, and separation stages. Focusing is obtained through ...

Critical Frequencies for a Rotor

The rotor in an electric motor is analyzed. In the design of a motor it is important that no eigenfrequencies for the rotor lie within the operating interval of the revolution speed (in revolutions / second) for the motor. If the eigenfrequencies of the rotor lie in this interval then this shortens the engines lifetime, and can sometimes even lead to dysfunction and breakdown. This 3d model of ...

Notch Approximation to Low Cycle Fatigue Analyis of Cylinder with a Hole

A load carrying component of a structure is subjected to multi-axial cyclic loading during which localized yielding of the material occurs. In this model you perform a low cycle fatigue analysis of the part based on the Smith-Watson-Topper (SWT) model. Due to localized yielding, you can use two methods to obtain the stress and strain distributions for the fatigue evaluation. The first method ...

Outgassing Pipes

This benchmark model computes the pressure in a system of outgassing pipes with a high aspect ratio. The results are compared with a 1D simulation and a Monte-Carlo simulation of the same system from the literature.

Pacemaker Electrode, Modeled with LiveLink for Creo Parametric

This model, dealing with the current and potential distribution around one pair of electrodes, demonstrates how to synchronize and modify geometry in Creo Parametric by using the LiveLink interface.

A Transport Problem

A transport problem, modeling stationary transport in one direction, with a discontinuous solution is solved to illustrate the effect of streamline diffusion. A pure stationary transport problems contains a convective term only. This means that oscillations and instabilities from the numerical method are some factors that need to be addressed. Streamline diffusion stabilizes oscillations ...

Quick Search