Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Computing the Radar Cross Section of a Perfectly Conducting Sphere

A classic benchmark problem in computational electromagnetics is to solve for the radar cross section (RCS) of a sphere in free space illuminated by a plane wave. This model solves for the RCS of a metallic sphere that has a very high conductivity, which can be treated as a material with infinite conductivity. Results are compare to the analytic solution, and agreement is shown.

Fresnel Equations

A plane electromagnetic wave propagating through free space is incident at an angle upon an infinite dielectric medium. This model computes the reflection and transmission coefficients and compares to the Fresnel equations.

Step-Index Fiber

The transmission speed of optical waveguides is superior to microwave waveguides, because optical devices have a much higher operating frequency than microwaves, enabling a far higher bandwidth. This model is an example of a single step-index waveguide made of silica glass. The inner core is made of pure silica glass with refractive index n1 = 1.4457 and the cladding is doped, with a refractive ...

Finding the Impedance of a Coaxial Cable

The coaxial cable (coax) is one of the most ubiquitous transmission line structures. It is composed of a central circular conductor, surrounded by an annular dielectric, and shielded by an outer conductor. This model computes the electric and magnetic field distribution inside of the coaxial cable, analyzes the impedance, and compares the result with the analytic solution.

Second Harmonic Generation of a Gaussian Beam

Laser systems are an important application area in modern electronics. With nonlinear materials it is possible to generate harmonics that are a multiple of the frequency of the laser light. This model shows how a second harmonic generation can be set up as a transient wave simulation, using nonlinear material properties. A YAG (lambda=1.06 microm.) laser beam is focused on a nonlinear ...

Lossy Circular Waveguide

In mode analysis it is usually the primary goal to find a propagation constant. This quantity is often, but not always, real valued; if the analysis involves some lossy part, such as a nonzero conductivity or an open boundary, the eigenvalue is complex. In such situations, the real and imaginary parts have separate interpretations: The real part is the propagation constant The imaginary part is ...

Transient Modeling of a Coaxial Cable

Simulation of Maxwell’s equations in the time domain is useful if the objective of the analysis is to observe a transient phenomenon, to find the time it takes a signal to propagate, or if the materials being modeled are non-linear with respect to the electric or magnetic field strength. This model simulates a pulse propagating down a coaxial transmission line and observes the time it takes for ...

SMA Connectorized Wilkinson Power Divider

Some conventional three-port power dividers are resistive power dividers and T-junction power dividers. Such dividers are either lossy or not matched to the system reference impedance at all ports. In addition, isolation between two coupled ports is not guaranteed. The Wilkinson power divider outperforms the lossless T-junction divider and the resistive divider and does not have the issues ...

Three-Port Ferrite Circulator

A microwave circulator is a multiport device in which a wave incident on Port 1 is coupled only into Port 2; a wave incident on Port 2 is coupled only into Port 3; and so on. Circulators are used to isolate microwave components, for example, to couple a transmitter and a receiver to a common antenna. They typically rely on anisotropic materials, most commonly ferrites. This model simulates the ...

Vivaldi Antenna

A tapered slot antenna, also known as a Vivaldi antenna, is useful for wide band applications. Here, an exponential function is used for the taper profile. The objective of this model is to compute the far-field pattern and to compute the impedance of the structure. Good matching is observed over a wide frequency band.

Quick Search