Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Thermal Expansion in a MEMS Device

This model analyzes the thermal expansion in a MEMS device, such as a microgyroscope, where thermal expansion should be minimized. The device is made from the copper-beryllium alloy UNS C17500 and uses temperature-dependent material properties from the Material Library. The purpose of this model is to exemplify the use of the Material Library in COMSOL Multiphysics. This library contains more ...

Parameterized I-Beam

This example shows how to parameterize a CAD model by deforming the corresponding finite element mesh. The method enables geometry parameterization of non-parameterized CAD models such as: - models created by the built-in COMSOL CAD tools - imported neutral CAD files such as .igs or .step - imported .x_t, .sat, or other vendor-specific formats - imported finite element mesh files The module ...

Fundamental Eigenfrequency of a Rotating Blade

High rotational speed in rotating machineries can result in centrifugal forces of considerable magnitude. The forces induced by the rotation give rise to two counteracting effects: stress-stiffening and spin-softening (or centrifugal softening). The former is caused by the stationary stress field created by the centrifugal force and acts to increase the stiffness of the body, and so increase its ...

Eigenfrequency Analysis of a Free Cylinder

This model calculates the eigenfrequencies and mode shapes of an unconstrained cylinder in axisymmetry. The model is taken from NAFEMS Free Vibration Benchmarks. The eigenfrequencies are compared with the values given in the benchmark report.

Radially Polarized Piezoelectric Transducer

This tutorial model shows how a user-defined coordinate system can be used to create any type of directional polarization of a piezoelectric material. Results are shown for the case of radial polarization of a piezoelectric disk. The piezoelectric material is PZT-5H. The example shows a static analysis. Visualization of the cylindrical coordinate system as well as the stress/strain in that system ...

Channel Beam

In this model, you build and solve a simple 3D beam model using the 3D Beam interface. This model calculates the deformation, section forces, and stresses in a cantilever beam, and compares the results with analytical solutions. The first few natural frequencies are also computed. The purpose of the example is twofold: It is a verification of the functionality of the beam element in COMSOL ...

Vibrations of a Disk Backed by an Air-Filled Cylinder

The vibration modes of a thin or thick circular disc are well known, and it is possible to compute the corresponding eigenfrequencies to arbitrary precision from a series solution. The same is true for the acoustic modes of an air-filled cylinder with perfectly rigid walls. A more interesting question to ask is: What happens if the cylinder is sealed in one end not by a rigid wall but by a thin ...

3D Fluid-Structure Interaction Simulation of an Obstacle in a Fluid Channel

In this model, fluid is flowing through a channel containing a flexible obstacle. Due to the viscous and pressure forces asserted by the fluid, the obstacle bends. With the obstacle undergoing a large deformation, the fluid flow domain also changes considerably. COMSOL Multiphysics takes these changes into account by computing the flow field on a moving mesh attached to the obstacle. In this ...

Vibrating Membrane

The natural frequencies of a prestressed circular membrane are computed and compared with analytical solutions. Two method are used: In the first study the prestress is given explicitly, while in the second study an external load provides the prestress.

Thermal Stress Analysis of a Turbine Stator Blade

The conditions within gas turbines are extreme. The pressure can be as high as 40 bar, and the temperature more than 1000 K. Any new component must therefore be carefully designed to be able to withstand thermal stresses, vibrations and loads asserted by the fluid rushing through the turbine. If a component fails, the high rotational speeds can result in a complete rupture of the whole ...

Quick Search