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Abstract: One of the major applications for 
dielectrophoresis is selective trapping and 
fractionation in lab-on-a-chip devices. 
Nevertheless, many-particles effects due to high 
concentration of biological material around 
electrodes can cause a rapid decrease of trapping 
efficiency in dielectrophoretic devices. In this 
contribution we present a new approach based on 
a drift-diffusion dynamics to study the particles 
behavior near electrodes surroundings. Within 
this approach we easily introduce many-particles 
effects by invoking the effective medium 
approximation (EMA). In this framework 
electrodes can saturate losing their capability to 
attract further particles thus leading to a more 
realistic scenario never discussed in past 
literature. The complete system of non-linear 
PDEs employed represents a good example of 
multiphysics simulation to be solved by using 
COMSOL. 
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1. Introduction 
In recent years dielectrophoresis (DEP) has 
emerged as an important technique for the 
manipulation of micro- and nano-sized particles 
suspended on a liquid medium [1,2]. Highly non-
uniform electric field at a length scale 
comparable to cell size can be generated easily at 
low voltages. Since the relative dielectric 
responses (DEP spectrum) of the cells are 
dependent on the driving frequency of the 
applied electric field, an alternating electric field 
is usually applied to generate dielectrophoretic 
forces of different magnitudes and directions. 
Therefore, DEP devices may be easily employed 
for separating different cell types by simply 
modifying field frequency. In order to generate a 
spatially non-uniform electric field, essential 
ingredient for DEP separation, an array of metal 

electrodes is embedded inside a micro-channel 
network. Starting point for any DEP separation 
strategy is the cell’s DEP spectrum which can be 
computed via electrical models or obtained from 
data on electro-rotation experiments [3,4]. Many 
physical parameters can affect DEP spectra and 
we refer the reader to the past literature [1-3,5] 
for a better introduction. Nevertheless, there is a 
strong evidence that many-particles effects, 
coming from high concentration of cells in the 
surroundings of electrodes, can be an important 
source of indetermination for the knowledge of 
separation (or trapping) efficiency.  
In the past decades different numerical 
approaches based on the direct solution of the 
equations of motion for a system of  particles 
have been used to account for many-particles 
effects in dielectric suspensions [6]. Due to the 
limited number of particles (i.e. N ∼ 100) 
considered, these techniques are no feasible in 
view of the simulation of real devices. In this 
letter we suggest a method to include many-
particles effects in the calculation of DEP 
trapping by mean of the effective medium 
approximation (EMA) for electric parameters of 
the suspension [7], where the local value of the 
volume fraction of dispersed particles is ruled by 
a drift-diffusion dynamics. We will demonstrate 
the reliability of the method and the importance 
of the many-particle corrections discussing a 
simulation example in a realistic DEP device 
geometry.  

N

This paper is organized as follows. After a brief 
introduction on dielectrophoresis and trapping 
strategies in DEP devices in section 1, we 
discuss in section 2 the model employed in a 
standard dielectrophoresis simulation for cell 
trapping and the modifications we propose for 
the introduction of many-particle effects in the 
framework of EMA. In section 3 we show the 
simulation results for both dynamical and 
stationary cases and finally we draw the 
conclusions.  
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2. The Model 
 

Most part of the physical information on 
dielectrophoresis resides in the DEP spectrum, 
known also as the Clausius-Mossotti factor [3], 
which in general is a complex quantity 
depending on the electrical field frequencyω , 
this factor reads: 
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respectively the complex dielectric functions of  
liquid medium and particles. However, if the 
local particle density is high the dipole-dipole 
particle interaction can significantly alter the 
DEP response [6]. We can approximately correct 
the DEP spectrum, embedding the many particle 
effects in the medium complex dielectric 
functions using the  EMA for the dielectric 
properties of heterogeneous two-component 
composite materials [7]. The EMA approach 
allows to calculate the electrical conductivity 
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σ  
and the dielectric function ε  for various shapes 
of composite materials as function of the hosted 
material ( 2ε , 2σ ) and the host material ( 1ε , 1σ ) 
properties. In the case where the material 2 is 
included by means of a random formation of 
spherical  clusters, the dielectric function ε  is 
given by [7]:  
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where φ  represents the volume fractions of  
cluster inclusions. This scenario is analogous to 
that of a liquid medium where spherical particles 
(cells) are dispersed with a fraction of volume 
locally variable, like the case we are going to 
discuss. The generalization of (1) to include the 
EMA is straightforward and can be obtained by 
simply performing the following substitutions: 
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In Fig.1 we present an example of DEP 
spectrum obtained from experimental data on 
latex micro-spheres given in [4]. As expected the 
effect of EMA in the DEP spectrum, shown in 
Fig.1, is a gradually flattening to zero of both 
real and imaginary part of Clausius-Mossotti 
factor as the volume fraction φ  approaches one. 
For dielectrophoresis induced by electrical field 
gradients only the real part of (3) is relevant and 
we deal with it throughout this paper. 

  Once the electrical properties of the mixture 
(particles plus liquid medium) are determined as  

 
Figure 1. DEP spectrum of latex micro-spheres 
obtained from data given in [4]. Straight and dashed 
lines refer respectively to the real and imaginary parts 
of the Clausius-Mossotti factor. Colors refer to 
different values of particle volume fraction φ  (see 
legend). 
 
a function of the volume fraction, we introduce 
the equations needed for a complete description 
of trapping in DEP devices. The governing 
equations for a DEP device usually concern 
those for electrostatic and viscous fluid 
dynamics, and according to [5] each particle 
subjected to the DEP force reaches a steady 
regime of motion very quickly so that electric 
and fluid parts result completely uncoupled. In 
other words the particle’s velocity field induced 
by DEP force, counterbalanced by drag force due 
to the liquid, DEPu

r
can be expressed by the 

following relation: 
      2|| Eu DEPDEP

rr
∇= µ   (5) 

where DEPµ  is called the DEP mobility and for 
a spherical particle of radius  and immersed in 
a liquid of viscosity 

R
η  and it reads: 
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In addition the electric potential V  can be 
computed by solving the Laplace equation: 

      00 =∇•∇− Vrεε
r

  (7) 
Subjected to the voltage boundary conditions or 
the continuity conditions for the normal 
component of the dielectric displacement at the 
internal boundaries. In particular, in the 
computational subdomain regarding the liquid 
medium with dispersed particles we must 
employ the value for the dielectric constant 

)(φε r  obtained within the EMA approach. 
Since in this paper we assume that particles 

reach quickly a steady motion regime, the 
computation of the liquid medium velocity field 

fluidu
r

 is done completely apart from the rest of 
the simulation and consists of solving the 
Navier-Stokes equation (NSE) for a steady and 
uncompressible fluid [9]. The vector 
composition of fluidu

r
 with the particle’s velocity 

DEPu
r

 field represents the main goal in a standard 
DEP simulation, since this quantity gives all 
information on the particle motion inside the 
DEP device allowing us to compute particles 
trajectories.  

The introduction of EMA in the simulation 
requires the knowledge of the local value of the 
particle volume fraction which is not easily 
tractable in the framework of a simple particle 
tracing. Therefore, the complete system of 
governing equations has to be enriched and 
consequently the way of representing particles 
inside a DEP device should be changed too. 
Since the total velocity field acts as a drift 
towards the electrodes, we can choose as 
physical quantity representing particles that of a 
drift-diffusion current J

r
 of  the following form: 
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In Eq.(8) the drift term, completely determined 
by the total velocity field fluidDEPtot uuu

rrr
+= , 

dominates with respect to the diffusion one. We 
note, that for particle’s dimension in the 
micrometer scale and in the diluted limit, D has 
only the meaning of a numerical diffusion, 
introduced to stabilize the entire calculation, 
while for the high density case D can effectively 
includes the scattering events between particles 
or the limit threshold of φ for the packing (see 

Eq. 10 below). In this picture the equation 
governing the time evolution of the particle 
volume fraction φ  is the one in the following 
flux-conservative form: 
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The latter equation (with the usual boundary 
conditions for J

r
 or φ ) coupled with Eqs.(1-7) 

represent the new set of governing equations, 
ready to be solved. The dependence on particle 
volume fraction of some electric constants makes 
the system highly non-linear since many physical 
parameters are now solution dependent.  

 

 
 
Figure 2. Snapshots taken at times 0, 2, 3, 4 seconds 
(from upper to lower) regarding the time evolution of 
particle volume fraction φ  (color field) and the 
streamlines of the total velocity field 

fluidDEPtot uuu
rrr

+=  (red lines). The color bar on the 

right gives the correspondence between colors and 
values of φ  . Particles and fluid enter from the left 

(initial fluid velocity of sm /15µ ) where at the 
boundary φ  is fixed to 0.3, in the other boundaries we 

employ the condition 0ˆ =• Jn
r

 for Eq.(9). Electrodes 
(in number of 10) are separated from the fluid by a 
silicon layer mµ3  thick and they are taken at a 
voltage of  or 0 5+  Volt in a alternate sequence (see 
[5]).  
 
 
3. Results
 

As simulation example of our model we 
considered the device geometry described in Ref. 



[5], i.e. a two-dimensional trap with an array of 
parallel interdigitated electrodes placed at the 
base of a rectangular channel where the 
dispersed liquid medium flows. Copper 
electrodes are deposited on a glass substrate.   
Eqs. (7) and (9) and the NSE  have been solved 
by using the COMSOL computational platform 
[8] which employs the standard finite element 
method for solving partial differential equations 
in a wide range of interests and types. For the 
simulation example shown in this letter we 
consider spherical latex particles of radius 

mR µ87.5=  and dielectric constant and 
conductivity respectively equal to 04.2 ε  

( ) and . 
Particles are dispersed in a saline solution 
(viscosity ) whose dielectric 
constant and conductivity are respectively 

mF /108542.8 12
0

−×=ε 2/0.7 mS

sPa ⋅= −310η

078ε  

and . During the calculation the 
electric field frequency 

2/0.6 mS
ω  is fixed to  

(see Fig.1).  In order to prevent the volume 
fraction exceeds the threshold value for the 
packing fraction of 0.74, we introduce a 
diffusion coefficient  depending on 

kHz10

D φ  by the 
following formula: 
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From Eq.(10) one can argue that for values of 
φ  well below 0.74 the diffusion coefficient is 
too high for a coherent treatment of diffusion for 
such a big particle, nevertheless in our 
simulation we choose as boundary value for φ  
that of  0.3, which turns out to be large enough to 
justify a possible enhancement of diffusion due 
to particle-particle collisions. In addition the 
non-linearity of the governing equations makes 
the computation very delicate and a 
concentration-dependent diffusion coefficient 
helps in achieving convergence.  

Concerning Eq.(10) two additional remarks 
are worthy of note. The first regards the effect of 
Eq.(10) in the final results, since the introduction 
of a φ -dependence on  with a cut-off at 0.74 
slightly reduces many-particles effects as will be 
clear later. The second has to do with the choice 
of Eq.(10) which is suggested only by intuitive 
arguments thus requiring further investigation on 

this point. A possible assessment for the latter 
can came from Monte Carlo diffusion 
simulations of hard spheres.  
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Figure 3. An enlarged portion of snapshot at 

sec4=t  of Fig.2. The color field represents the 
particle volume fraction φ  at the surroundings of an 
electrode where φ  reaches its maximum value (colors 
are the same as in Fig.2). Abscissa and ordinate are 
spatial coordinates. In the inner panel the cross-
section, taken just above the red region at 

, of the Clausius_Mossotti factor 
as a function of the ordinate is shown, colours of the 
curves refer to the same times of the snapshots of 
Fig.2 (see the legend).  
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In Fig.2 some snapshots of the solution at 
different times are reported, in particular the 
color field represents the particle volume fraction 
φ  while red lines are streamlines representing 
the total velocity field totu

r
 acquired by the 

suspended particles. The real part of the 
Clausius-Mossotti factor  decreases as φ  
increases, leading to a non-negligible many-
particles effects in trapping efficiency. As 
expected the increasing particle fraction at the 
electrodes surroundings determines an evident 
reduction of trapping capabilities. This aspect 
becomes also more clear in Fig.3 where we focus 
in a small region around one electrode in order to 
show better the behavior of both φ  and DEP 
spectrum. Note, indeed, the time dependence of 

),( φωCMf  near the electrode shown in the inset 
of Fig. 3.   



       In Fig.4 the stationary solution is shown as 
in the previous pictures the color field represents 
the particle volume fraction φ . In addition we 
report also a contour plot (second panel from 
above) regarding the real part of the Clausius-
Mossotti factor which varies together with φ  
throughout the device according to the EMA 
prescription.  
Nevertheless, the stationary solution reported in 
Fig.3 is obtained imposing slightly different 
conditions with respect to the dynamical ones. In 
this case indeed, maintaining the same apparatus 
as before for the electrostatic and fluid dynamic 
sectors, the value of φ  is fixed at a value of 0.5 
in both left and right walls of the computational 
domain. Moreover, the initial value of φ  is 
chosen constant and non-zero throughout the 
computational domain. In other words before 
stating the simulation the device’s channel is 
filled uniformly with the dispersed medium at a 
value of 0.5 for the particle volume fraction φ .  
     Even in Fig.4 results show an evident 
decrease of trapping capabilities due to many-
particle effects which is stressed in the lower two 
panels focusing the neighbors of the last  
electrode, where a rapid increase of  φ  (lower 
left panel) determines consequently a decrease of 
the Clausius-Mossotti factor (lower right panel). 
 
 
4. Conclusions 
 
      The simulation results here discussed show 
the importance of the inclusion of the many 
particle corrections for a reliable prediction of 
the trapping efficiency in devices aimed at the 
manipulation of micro- and nano-sized particles. 
The formalism should be applied in all the case 
where the diluted limit locally fails. This 
situation is rather common (not only for devices 
working in trapping configuration) since high 
particle density can be achieved in device 
geometry where tight regions are built to suitably 
tailor the electric field [10].  
      The combination of EMA and drift-diffusion 
opens the possibility to study carefully how 
many-particles effects can influence the features 
dielectrophoresis based devices. The formalism 
here presented represents only a first step toward 
a complete description of the possible complex 
particle kinetics in these devices  and advances 

are still needed. Indeed, the diffusion formalism 
can be easily generalized to a reaction-diffusion 
one in order to considered particle’s stitching and 
clustering. Work in this direction is still in 
progress. 
 

 
 
Figure 4.  Plot regarding the stationary solution. The 
first two panels (from above) represent respectively 
the particle fraction φ  (colour field) and the contour 
plot regarding the real part of the Clausius-Mossotti 
factor. Enlarged portions in the neighbors of the last 
electrode for both  plots are shown in the lower part of 
the figure. 
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