AMPHOS²¹ an RSK company

COMSOL CONFERENCE 2023 MUNICH

25 - 27 October

NUMERICAL MODELLING OF BENTONITE EROSION DUE TO SEDIMENTATION IN SLOPING FRACTURES

Virginia Cabrera¹, Arnau Pont¹, Andrés Idiart¹, Patrik Sellin²

¹Amphos 21 Consulting S.L, Barcelona, Spain

²SKB, Solna, Sweden

Virginia.Cabrera@amphos21.com

www.amphos21.com

www.rskgroup.com/rsk-businesses/

Bentonites are an active clay that presents several properties such as:

- high swelling potential
- high retention capacity
- Iow hydraulic conductivity

Due to its properties, **bentonite** has been selected as the **engineering barrier** between the encapsulated radioactive waste and the bedrock (**buffer material** and **tunnel backfill**).

Bentonite erosion mechanisms in fractures

- Mechanical erosion due to shear by seeping water
- Sedimentation due to flocculation (chemical erosion)
- Sedimentation due to gravity in sloping fractures

Objective

The study of **bentonite erosion mechanisms in fractures** is a problem of maximum interest in understand their impact on the *long-term performance* of the bentonite buffer.

Experimental tests of bentonite pellet in narrow fractures

Images of extrusion and mass loss of sodium montmorillonite in 45° sloped fractures with 1 mm apertures, left and 0.1 mm. Simulated Grimsel water, GGWS, with Na⁺ 0.68 and Ca²⁺ 0.14 mM (Schatz and Akhanoba 2016).

Model for bentonite expansion and erosion by Neretnieks and co-workers [1] accounted for:

- Expansion of the smectite in the fracture:
 - balance between
 - the *repulsive* **Diffusive Doble Layer** forces
 - the attractive van der Waals forces
- Mechanical erosion due to shear by seeping water in the fracture

Based on the bentonite expansion and erosion model by Neretnieks and co-workers [1], Amphos 21 has developed a model with the following features:

[1] (Liu et al. 2009, Moreno et al. 2010 and Neretnieks et al. 2009)

Wall friction model

Shear velocity
$$|\vec{w}| = \frac{\tau_1 \delta}{4 \eta_{\text{eff}}} f(r, \delta, [\text{Na}^+])$$

 The wall friction term has been correlated with fracture aperture according to the Herschel-Bulkley flow model (for viscous shear stresses)

• Rim thickness has been correlated with sodium concentration at the rim ($c_{\rm rim}$)

Sedimentation model

Settling velocity
$$u_p = \frac{g(\rho - \rho_w)d_p^2}{18\eta_w}$$

 $\kappa = \frac{\eta_{rel}d_p^2}{18}$
Darcy equation $\partial_t \rho + \nabla \cdot \left(\rho \frac{\kappa}{\mu} (\nabla p - \rho \mathbf{g})\right) = 0$

- Particle drag force
- Unconstrained particle aggregate (floc) diameter: $d_p = 30 \mu m$
- A cubic law for the settling velocity u_p in terms of the fracture aperture δ ($\alpha = 3/2$). Note for $\delta = 0.1$ mm, a linear law ($\alpha = 1/2$)

Implementation

Three governing equations have been solved with a staggered scheme

Implementation

• 3D model of a bentonite pellet intersected by a fracture (a quarter of the domain)

Implementation

- A domain decomposition

 with a prescribed motion at
 the rim (moving mesh) had
 been developed in order to
 consider wall friction as a
 boundary force (Gauss
 theorem)
- Range of number of elements: 15k – 18ok

Validation cases

The model is validated with relevant experimental data of small-scale tests including different bentonite, pellet volumes, fracture apertures, initial dry densities, slopes, and flow rates.

Ref.	Case	Bentonite type	Dry density [kg/m³]	Initial radius [m]	Water inlet velocity [m/s]	Fracture aperture [mm]	Fracture slope (º)	Duration [d]
[1]	Schatz(2017)#2a	MX-80	1400	0.01	0	0.1	0	30
	Schatz(2017)#2b	MX-80	1400	0.01	0	0.1	45	30
	Schatz(2017)#2c	MX-80	1400	0.01	0	0.1	90	30
[2]	Ciemat(2022)#14	Nanocor	1400	0.0095	0	0.1	90	30
	Ciemat(2022)#15	Nanocor	1400	0.0095	0	0.45	90	30
	Ciemat(2022)#16	Nanocor	1400	0.0095	0	0.36	90	30
[3]	Hedström(2020)#1	MX-80	1420	0.0175	2.96·10 ⁻⁵	0.1	90	63
	Hedström(2020)#2	MX-80	1420	0.01	2.96·10 ⁻⁵	0.1	90	63
[4]	Schatz(2020)#5	MX-80	1100	0.01	5.60·10 ⁻⁵	0.1	90	63

Infiltration water (all tests) \rightarrow [Na⁺] = 1 mM

- [1] Schatz and Akhanoba (2017). Bentonite buffer erosion in sloped fracture environments. Posiva 2016-13
- [2] Ciemat (2022). Benero: Bentonite Erosion project
- [3] Hedström (2020). Empirical Assessment of Chemical Erosion. Clay Technology AB.
- [4] Schatz (2020). Empirical Assessment of Chemical Erosion. Task 3.

Results

	0⁰ Schatz(2017)#2a				
Fracture slope:	— ●45º Schatz(2017)#2b				
	•••••90 ² Schatz(2017)#2c				
Fracture apertura	-0.36 mm Ciemat(2022)#16				
	•••••0.45 mm Ciemat(2022)#15				
Dry density	- 1420 kg/m3 1 cm Hedström(2020)#2				
initial pellet radio:	•••••1100 kg/m3 1 cm Schatz(2020)#5				

Schatz(2017)#2a	Schatz(2017)#2b	Schatz(2017)#2c	Volume fraction of bentonite al the end of the test	
			φ 0.5 0.45	
Ciemat(2022)#14	Ciemat(2022)#15	Ciemat(2022)#16	0.4	
			0.35	
			0.3	
			0.25	
			0.2	
			0.15	
Hedström(2020)#1	Hedström(2020)#2	Schatz(2020)#5	0.1	
			0.05	
			A ²¹	

Results

* Experimental data are no yet available (test in progress)

Conclusions

- The model for bentonite expansion and erosion has been developed in COMSOL Multiphysics due to its high adaptability, easy implementation and computational efficiency.
- Sodium cation transport, smectite expansion and fracture flow have been coupled.
- A domain decomposition with a prescribed motion at the bentonite-water (moving mesh) has been developed in order to consider wall friction as a boundary force (Gauss theorem).
- The sedimentation model, although at a preliminary development stage, has yielded promising results in a wide range of scenarios.
- **Next step**: **upscaling** to predict the expansion and erosion of bentonite in fracture under repository conditions.

AMPHOS²¹ an RSK company

ESPAÑA

C. Veneçuela, 103, 2ª planta 08019 Barcelona Tel.: +34 93 583 05 00

Paseo de la Castellana 40, 8ª Planta 28046 Madrid Tel.: +34 620634729

CHILE

Avda. Nueva Tajamar, 481 WTC – Torre Sur – Of 1005 Las Condes, Santiago Tel.: +562 2 7991630

PERÚ

Av. Primavera 785, Int. 201, Urb. Chacarilla - San Borja Lima 41 Tel.: +51 1 592 1275

www.amphos21.com

