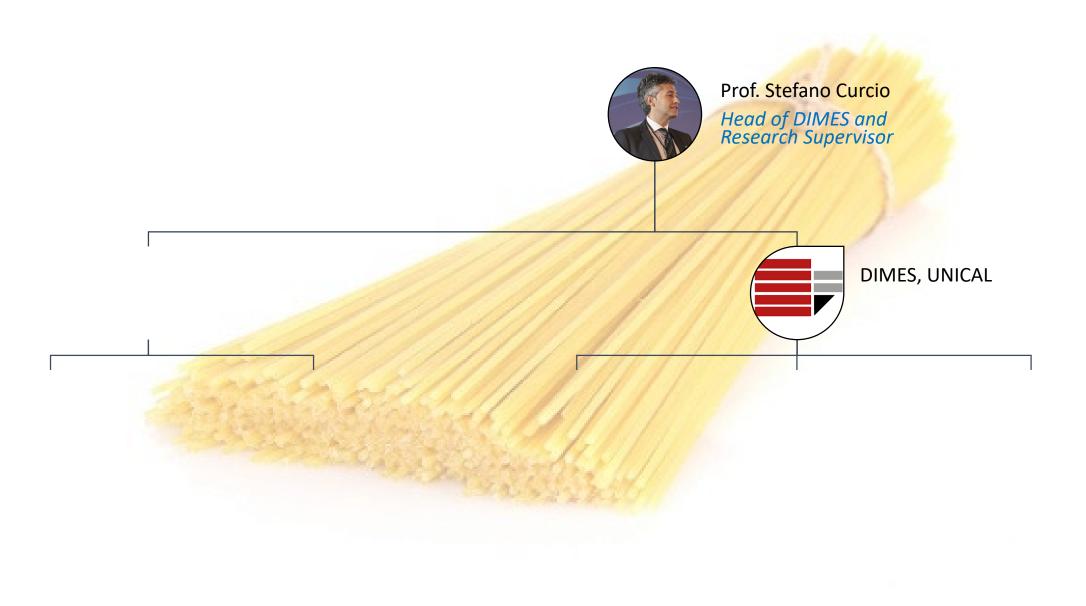


UNIVERSITÀ DELLA CALABRIA

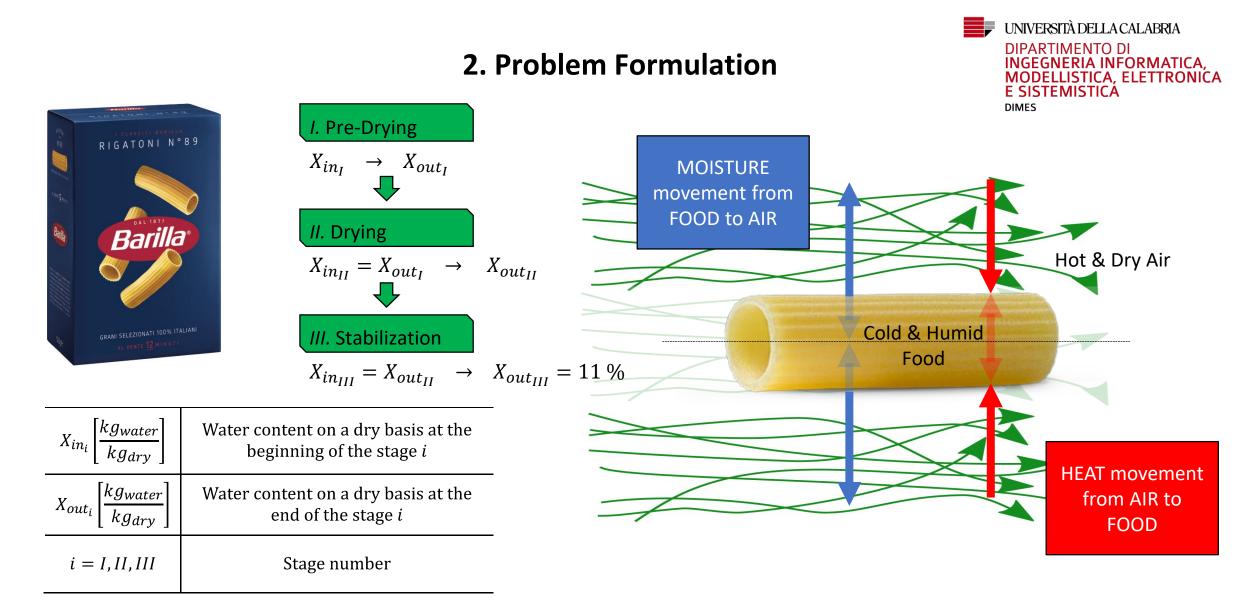
DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES



Modeling and Simulation of the Pasta Drying Process via Comsol Multiphysics

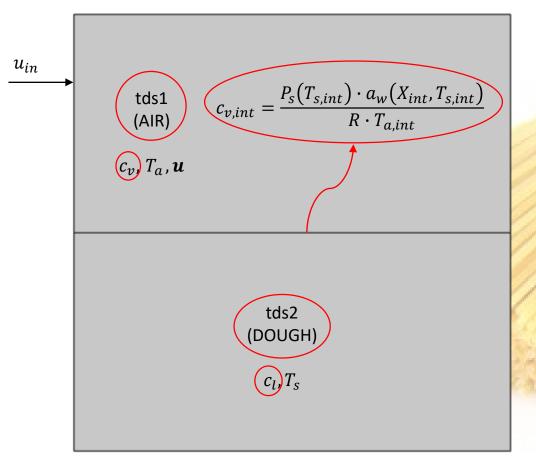
Gaetano Adduci

Outline


UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

- 1. Engineering Modeling & Simulation
- 2. Problem Formulation
- 3. Transport Equations
 - 3.1. Heat / Mass Transfer
 - 3.2. Momentum Transfer
- 4. Model Structure
- 5. Implemented Conditions
 - 5.1. Initial Conditions
 - 5.2. Boundary Conditions Fluid Domain

- 5.3. Boundary Conditions Solid Domain / Interface
- 6. Glass Transition Phenomena
- 7. Geometry
- 8. Study and Results
 - 8.1. *DIP*, Output Variables, Study
 - 8.2. Model 2 X/RH Space Evolution DIP
 - 8.3. Model 2 X Parameterization of $T_{a,in}$ and RH_{in}
 - 8.4. Model 1 GLT Space Evolution DIP
- 9. Conclusions



	3.1. Heat / Ma	UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA
	Solid Domain	Fluid Domain
Heat	$\rho_d C_{pd} \partial T_s / \partial t = \nabla \cdot (k_d \nabla T_s)$	$\rho_a C_{pa} \frac{\partial T_a}{\partial t} - \nabla \cdot (k_a \nabla T_a) + \rho_a C_{pa} u \nabla T_a = 0$
	• By conduction exclusively	• By both convection and conduction
	• Fourier's Law	
	• Evaporation only occurs at food surface	
Mass	$\partial c_l / \partial t = \nabla \cdot (D_d \nabla c_l)$	$\frac{\partial c_{\nu}}{\partial t} + \nabla \cdot (-D_a \nabla c_{\nu}) + u \nabla c_{\nu} = 0$
	• By diffusion exclusively	By both convection and diffusion
	• Fick's Law	• Vapour species only
	Liquid species only	
	• Evaporation only occurs at food surface	

4. Model Structure

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

- 2 different species, each for each domain (c_v, c_l)
- 2 "Transport of Diluted Species" modules, each for each domain (AIR/DOUGH)
- The vapour concentration at the interface is derived from the thermodynamic equilibrium condition

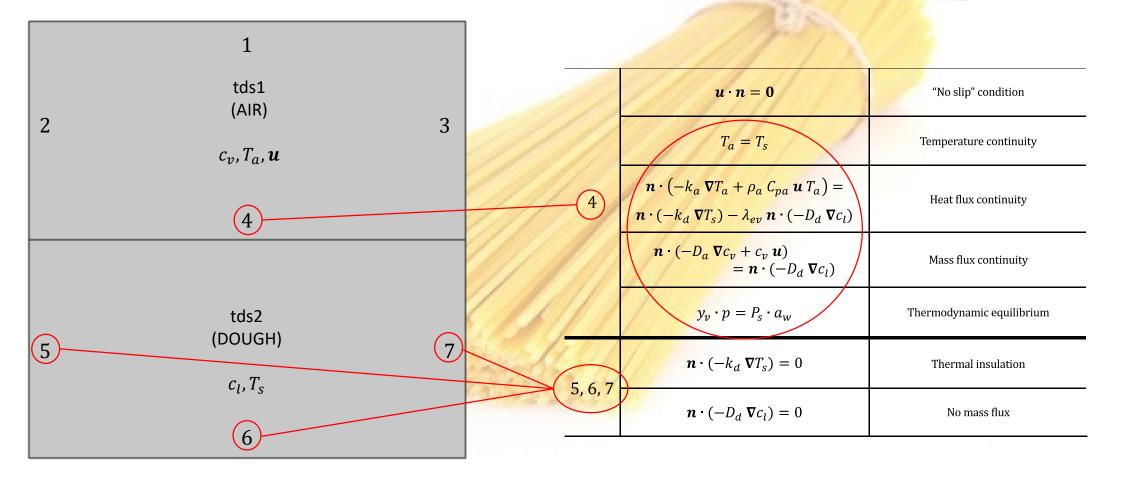
$$y_v \cdot p = P_s \cdot a_w; \quad c_T \cdot R \cdot T_a = p; \quad \Rightarrow$$

$$c_{v} = y_{v} \cdot c_{T} = \frac{P_{s} \cdot a_{w}}{R \cdot T_{a}};$$

a _w [-]	Water activity	$P_{s}[Pa]$	Water saturation pressure
$C_l \left[\frac{mol}{m^3}\right]$	Liquid concentration	$R\left[\frac{J}{mol\cdot K}\right]$	Gas constant
$C_{v}\left[\frac{mol}{m^{3}}\right]$	Vapour concentration	$T_a[K]$	Air temperature
$C_T \left[\frac{mol}{m^3}\right]$	Air-vapour mixture concentration	$T_s[K]$	Dough temperature
p [Pa]	Total pressure of air-vapour mixture	$\boldsymbol{u}\left[\frac{m}{s}\right]$	Air velocity vector

INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA **5.1. Initial Conditions** DIMES $\boldsymbol{u} = \boldsymbol{0}$ u = 0Initial air velocity field equal to 0 along both components tds1 $T_a = T_{a,0}$ (AIR) $T_a = T_{a,0}$ Initial air-vapour mixture temperature Fluid $c_{v} = c_{v,0}$ $c_{v}, T_{a}, \boldsymbol{u}$ Initial concentration of vapour within the fluid $c_v = c_{v,0}$ $p = p_{atm}$ Initial pressure inside the drying chamber $p = p_{atm}$ tds2 $T_s = T_{s,0}$ Initial dough temperature $T_s = T_{s,0}$ Solid (DOUGH) $c_{l} = c_{l,0}$ Initial water concentration within the solid matrix $c_{l} = c_{l,0}$ c_l, T_s

Gaetano Adduci - DIMES, UNICAL Comsol Conference, Munich, October 2023

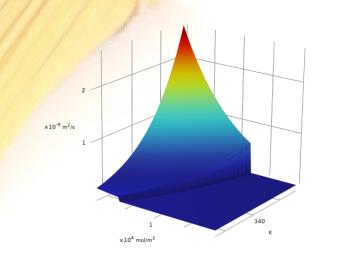


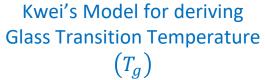
UNIVERSITÀ DELLA CALABRIA

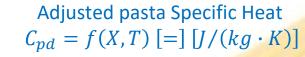
DIPARTIMENTO DI

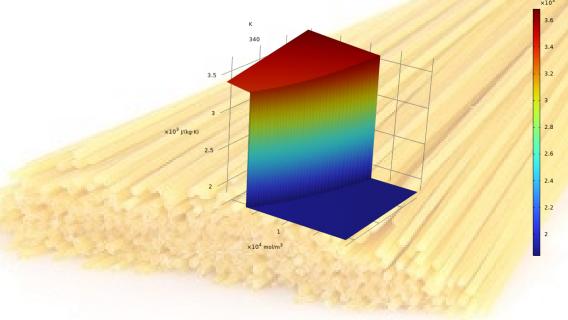
5.3. Boundary Conditions – Solid Domain / Interface

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

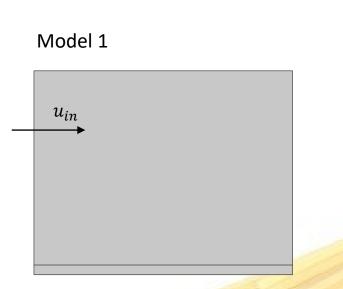

6. Glass Transition Phenomena


UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES


×10⁻¹⁰


15

Adjusted Water Diffusion Coefficient within pasta $D_d = f(X,T) [=] [m^2/s]$

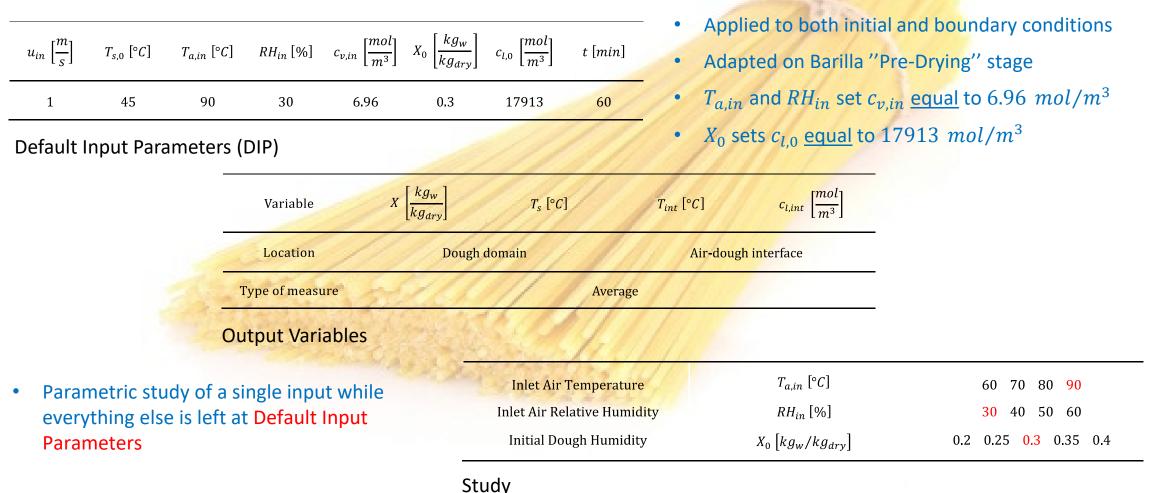


- $T_g = f(X)$
- Rubbery State above, Glassy State below
- *T*_g

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

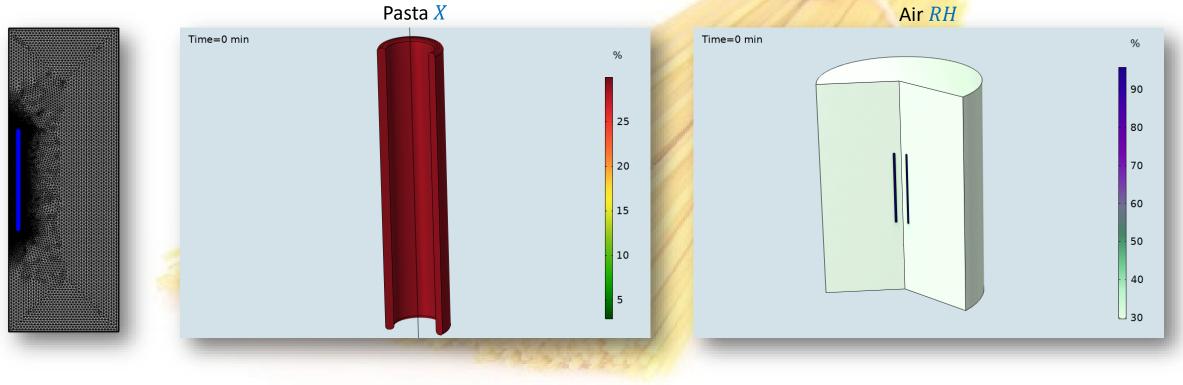
- Basic geometry
- 2 stacked blocks
- 'Tagliatella' pasta (3 mm thick, 80 mm long)
- Mainly used to study effects at the interface

- Axisymmetric geometry
- 3 concentric cylinders
- 'Rigatone' pasta (1.3 mm thick, 46 mm long, 5 mm outer radius)
- Dryer duct dimensions fitted to a single piece


- More complex geometry
- 7 randomly placed sections placed witihin a block
- 'Rigatone' pasta (1.3 *mm* thick, 46 *mm* long, 5 *mm* outer radius)
- Attempt to approach real system geometry

8.1. DIP, Output Variables, Study

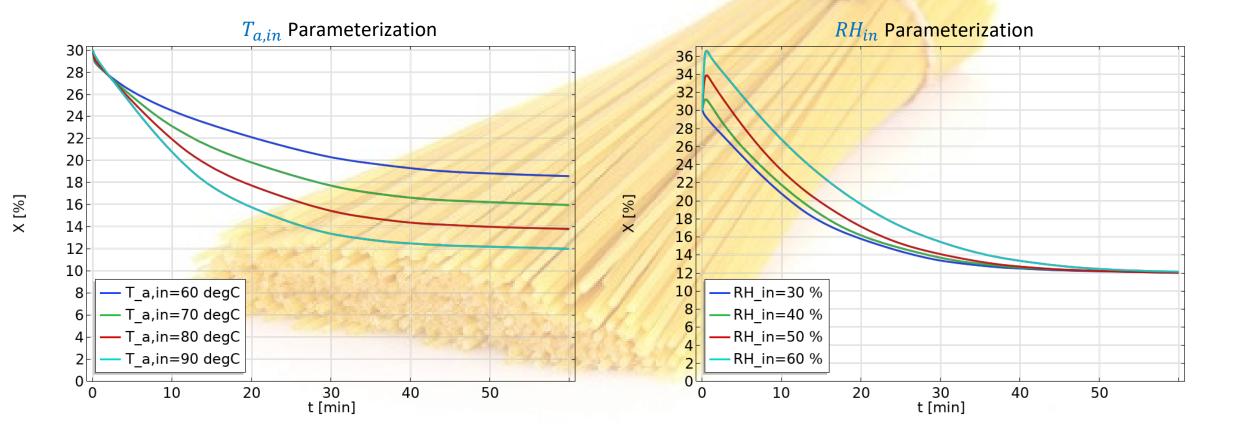
UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES



8.2. Model 2 – *X/RH* Space Evolution - *DIP*

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

- Mesh Vertices 1181
- Number of Elements 2012


- Average Element Quality 0.8884
- Mesh Area $59.58 mm^2$

8.3. Model 2 - X - $T_{a,in}$ and RH_{in} Parameterization

8.4. Model 1 - *GLT* Space Evolution – *DIP*

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

	Time=0 min	Time=0 min	
		• max: 3.00000 mm • min: 2.72716 mm	
A Mach Martines 452	Augusto a Flow out Ouglity 0.0011		

- Mesh Vertices 453
- Number of Elements 722

- Average Element Quality 0.9041
- Mesh Area $240 mm^2$

9. Conclusions

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA DIMES

- **Transport phenomena** within a drying chamber were first **modelled** and then **simulated** via Comsol Multiphysics.
- Fourier's / Fick's Laws have been implemented for heat / mass transfer within the solid.
- Comsol implementation of **2 tds** modules, each for each domain.
- The proposed model totally **disregards** the use of the **transport coefficients** of matter and heat at the interface between the samples to be dried and the drying air.
- Glass transition phenomena were also taken into account.
- Various less or more complex geometries.
- Simulations uphold the underlying physics of the process, matching validation tests quite well.
- No shrinkage phenomena at present stage.

Thanks for your attention!

Gaetano Adduci - DIMES, UNICAL Comsol Conference, Munich, October 2023

UNIVERSITÀ DELLA CALABRIA

DIMES

DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA