A complex online model for the iron ore reduction in the blast furnace

A complex online multiphysics model of the blast furnace shaft for various operational conditions and charging programs

Y. Kaymak¹, H. Bartusch¹, T. Hauck¹, D.I. Durneata², S. Hojda²

1. Process Optimisation Iron and Steel Making, VDEh-Betriebsforschungsinstitut GmbH, Düsseldorf, Germany.

2. Technologie Roheisenerzeugung, Aktien-Gesellschaft der Dillinger Hüttenwerke, Dillingen/Saar, Germany.

Short Introduction of Blast Furnace

- > Blast furnace is a huge counter-flow reactor
- > Iron ore (pellet or sinter) and coke feed from top using advanced charging programs to for a controlled layered structure
- Usually O₂-enriched hot air injected through tuyeres (pulverized coal, natural gas, or oil can be also injected to reduce coke rate)
- Hot blast gas mostly converted to CO and H₂ in the raceway which then react with the ore particles and remove Oxygen
- As the burden descending, a sponge formed iron forms, which then starts melting and dripping in the cohesive zone (CZ)
- > Below CZ only remains cokes (relatively stationary deadman: DM)
- > This study focuses on the ore reduction above CZ.

Model set-up and assumptions

- Model covers reactions and gassolid heat exchange at the dry stack region
- > Burden moisture given by H₂O^s
- Coke is composed of mainly C and rest contributes to Slg
- Ore is composed of mainly Fe₂O₃, some FeO and rest is called SIg
- $^{\scriptscriptstyle >}$ Gas is composed of CO, CO₂, H₂, H₂O and N₂
- Burden structure (ore/coke layers) are implemented by anisotropic permeability

Burden Structure

Model calibration by experiments (CO and H₂)

*) kr_lit = exp(22.84 - 40258[K]/T); % m³/(kg*s) kr_mod = exp(24.27 - 42740[K]/T);

*) I. Muchi, Mathematical model of blast furnace, ISIJ, Vol. 7, 1967.

**) Murayama, T.; Ono, Y.; Kawai, Y.: Step-wise Reduction of Hematite Pellets with CO-CO2 Gas Mixtures. Tetsu-to-Hagané 63 (1977), pp. 1099/1107 **) krHM_lit= 23.63*exp(-1.2*9520[K]/Ts)[m/s]; krMW_lit= 1948.5*exp(-14500[K]/Ts)[m/s]; krWF_lit= 3277.5*exp(-15050[K]/Ts)[m/s];

krHM= exp(1.24-8688[K]/Ts)[m/s]; krMW= exp(3.535-10080[K]/Ts)[m/s]; krWF= exp(1.05-8008[K]/Ts)[m/s]; krHM_lit= 23.63*exp(-1.2*9520[K]/Ts)[m/s]; krMW_lit= 1948.5*exp(-14500[K]/Ts)[m/s]; krWF_lit= 3277.5*exp(-15050[K]/Ts)[m/s];

krHM= exp(-2.952-3329[K]/Ts)[m/s]; krMW= exp(6.869-13251[K]/Ts)[m/s]; krWF= exp(6.942-16189[K]/Ts)[m/s];

Legend: Opt → from single isothermal experiment Eqn → regression line to Opt

Lit \rightarrow literature equation

2d simulation example (online process model for Dillinger BF4)

> typical FEM mesh

variation of layer angles
via polynomial regression

> variation of coke volume fraction

Dillinger BF4 operational data

Results of Dillinger BF4 model

25-27.10.2023 Kaymak, Bartusch, Hauck, Durneata, Hojda | Comsol Conference 2023 Munich

Results of Dillinger BF4 model vs. operational measurements

> wall pressure (bar)

The model estimation for wall pressure fits quite well.

General top temperature level fits well.

Comparison to SOMA and DDS data not done yet.

3d simulation example

Variation of layer <u>angles</u>
via polynomial regression

 Variation of <u>coke volume</u> fraction via polynomial regression

> Typical FEM mesh

Results of 3d BF model

Conclusions on BF model of the dry stack zone

DILLINGER® BEI

> Multi-physics-based stack monitoring model ("virtual BF") developed

- Main results of the model describes the state of the dry stack (temperature, flow distribution, compositions, reduction degree, etc.)
- Various BF operational data can be used as input to the model (charging material types, blast data, tapping data, etc.)
- Operational measurements can be used to calibrate the model (top gas measurements, SOMA and 3D radar, wall pressures, etc.)
- > Results of operational measurements are not always plausible and may cause implausible model results → a careful check needed

Contact

VDEh-Betriebsforschungsinstitut GmbH in Stahl-Zentrum Sohnstraße 69 40237 Düsseldorf

