Radiation Force Eftect at the Dielectric Water-Air Interface
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Introduction: The effects of radiation pressure exerted on
a dielectric surface exposed to electromagnetic radiation
has been a long-standing debate for over a century. The
effect can be interpreted as the transfer of momentum from
photons at the surface In the direction of propagation of the
incident electromagnetic radiation!2,
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Figure 1. Schematic diagram of the time-resolved photomechanical
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mirror under continuous (a) and pulsed (b) experimentst.

Computational Methods: The radiation force effects on
the surface displacement can be calculated by solving the

Navier-Stokes equation

with appropriated boundary

conditions. The surface deformation can be described by
the radiation pressure as well as those forces due to gravity

and surface tension.
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Table 1. Parameters used for the
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Results: Figures 3 and 4 display the actual
deformation of water at different exposure times?.
Under continuous (cw) excitation, the liguid surface
rises with time reaching a maximum deformation of
around 30nm at the center of the excitation beam,
Figure 3. As for the pulsed excitation, a sharp peak
appears at short time, which is dispersed rapidly on
the surface, Figure 4.
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Figure 3. Water surface deformation under cw excitation.
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Figure 4. Water surface deformation under pulsed excitation.
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Figure 5. Time-resolved PM transients?.

Conclusions: The numerical predictions are In
excellent agreement for both the continuous and
pulsed excitation transients. In fact, 1t shows
guantitatively that the effects of radiation forces In
water can be fully described.
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