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Abstract: The theoretical model in this paper is 
a wave-guide structure: a cylindrical borehole 
filled with fluid with infinite length penetrating a 
transversely isotropic (TI) solid formation, which 
also extends to infinity. It is the basic model of 
acoustic well logging. We use a 2.5D frequency 
wave-number domain method to simulate the 
acoustic field with the PDE interface of 
COMSOL Multiphysics. A convolutional 
perfectly matched layer (C-PML) is implemented 
to simulate the infinite solid area. There are three 
steps to solve such a problem. First, derive the 
2.5D wave equation from the 3D form. Second, 
compare the 2.5D equation with the general 
formulas provided by COMSOL and obtain the 
corresponding coefficients. Third, conduct post 
processing to analyze the mode distribution, the 
dispersion and the wave form in time domain. 
This method can be used to analyze other similar 
model like elliptic borehole or logging-while-
drilling borehole with very little modification. 
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1. Introduction 
 

Acoustic well logging is important in oil 
exploration and development industry. Its 
simplified theoretical model is a wave-guide 
structure as a cylindrical borehole filled with 
fluid penetrating a solid formation (Figure 1.a). 
Nevertheless, unlike the traditional wave-guide 
structure, the solid formation extends to infinity, 
which complicates the problem. 

In recent years, significant hydrocarbon 
reservoirs have been discovered in deep water 
environments. Offshore development adopts 
high angle wells to reduce drilling cost. Besides, 
these offshore reservoir formations often exhibit 
strong anisotropy [1]. Thus, we need to analyze 
the wave propagation in such a deviated borehole 
model. 

In this paper, we use the PDE interface of 
COMSOL to implement the 2.5D frequency 
wave-number domain method to investigate the 
wave propagation in a deviated borehole 

penetrating a TI formation. A C-PML is realized 
to eliminate the reflections from the artificial 
truncation boundary, also using the PDE 
interface. 

 

 
a)  

 
b) 

Figure 1 A deviated borehole model 

 
2. Model and theory 
 

Figure 1.b shows the borehole structure, we 
assume that the borehole axis is vertical while 
the inclined angle of the formation symmetric 
axis is  . The acoustic source is located at the 
origin of coordinates. The borehole structure 
keeps invariant in z  direction. Using the 
separation of variables technique, the wave 
propagation along z  direction may be described 
by  ikzexp , where k  is the wave-number in z  

direction [2]. Then we have:  
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Now we just need to compute  yxp ,  for 

different   and k  instead of  zyxp ,, , which 

reduce computing scale greatly. 
 
3. Equation-based modeling 
 
3.1 C-PML and solid area 

Figure 2 shows the schematic diagram of 
the computational model. There exist the circular 
fluid area, the TI solid formation and the C-PML 
from inside out. 

 

 
Figure 2 Schematic diagram of computational model 

 

To apply the C-PML, we use the following 
complex coordinate transformation (take x  for 
instance here, similar operations are carried out 
on y  and z ) [3]: 
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where 
xs  is the complex frequency shifted 

stretched coordinate metrics: 
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Consider the propagation of waves in an 
elastic solid medium, the equation of motion in 
frequency domain is: 
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And we also have the constitutive relation: 
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By combining the equation 5~7, we obtain 
3D wave equations about displacement. To 

obatin the 2.5D form, we use ikz   and 

1zs  since the borehole extends to infinity in 

the z  direction [4]. Compare the results with 
equation 8.a, the general formula provided by 
COMSOL: 
   fauuuuc   . (8.a) 

    Thgquuucn  . (8.b) 

 rhu  . (8.c) 
we can obtain the corresponding coefficients. 

What calls for special attention is that the 
elastic constants matrix should be rewritten in 
the new Cartesian coordinate system, using the 
Bond Transform [5]: 

 
TMMCC 0 . (9) 

where M  is a 6*6 matrix about  . 0C  is the 

matrix in the zyx   Cartesian coordinate system: 
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3.2 Fluid area and boundary 

The variable in the equation of fluid area is 
the displacement potential G , it fulfills the 2.5D 
frequency domain wave equation: 
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Comparing it with the general formula equation 
8.a as before, we can obtain the coefficients. 

The physical description of the fluid-solid 
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boundary condition has three items: the 
continuation of normal displacement and normal 
stress, the tangential stress equals zero, that is: 
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Comparing the equations with equation 8.b and 
8.c, we can also get the corresponding 
coefficients. 
 
4. Numerical results 
 

The parameters of TI formation are listed in 
Table 1, other parameters are smv f /1500 , 

3/1000 mkgf  and the borehole radius 

mR 1.0 . We use a dipole source to obtain the 
flexural mode wave. To guarantee the accuracy, 

the size of the mesh is smaller than 
6

1
 of the 

minimum of the wave-length. 
 

 11c  

GPa 

33c  

GPa 

13c  

GPa 

44c  

GPa 

66c  

GPa 

s  

kg/m3 

Austin 
Chalk 

22.0 14.0 12.0 2.4 3.1 2200 

Cotton 
Valley 
shale 

74.7 58.8 25.3 22.0 30.0 2640 

Table 1 Parameters of the TI formations 
 

 
Figure 3 Flexural mode in the frequency wave-

number domain 
 

Figure 3 shows the frequency wave-number 

domain results at 90 , using soft formation 
Austin Chalk. It can be clearly seen that the 
flexural mode splits into fast and slow flexural 
mode wave corresponding to different dipole 
orientation. 

 

 
Figure 4 Comparison of flexural phase velocity by 

COMSOL with the analytic solution 
 

Figure 4 shows the phase velocity 
dispersion curve which gives a validation of our 
method. The TI formation is Austin Chalk and 

0 . The blue line represents the analytic 
result while the red circles are obtained by 

kvphase   from the direct frequency wave-

number domain result like that in Figure 3. The 
high accuracy in this figure also indicates the 
good performance of the C-PML. 

 

 
Figure 5 Flexural phase velocity dispersion curves, 

 90,45,0 , hard formation 

 
Figure 5 gives the dispersion curves for 

different inclined angles  90,45,0 , and the 

TI formation is a hard formation Cotton Valley 
shale. Results like this is important in the 
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borehole acoustic analysis. It is also the 
advantage of our 2.5D frequency wave-number 
method that we can obtain the mode distribution 
and dispersion clearly and accurately without 
considering the specific form of source wave 
form. 

 

 
Figure 6 Wave form for fast and slow flexural wave 

 
Although the above are the frequency 

domain results, we can also obtain the wave form 
in time domain using equation 1. Figure 6 shows 
the fast and slow wave form at offset=5m, 

90 , the formation is Austin Chalk. From 
this figure we can see the split flexural in time 
domain. 
 
5. Conclusions 

The PDE interface of COMSOL is a strong 
tool to conduct equation based modeling and 
analysis. In this paper, we use this module to 
implement a 2.5D frequency wave-number 
domain method to investigate the mode wave 
propagation in a deviated borehole. There are 
several advantages of this method: 

1. With this 2.5D frequency wave-number 
method, we can obtain the mode distribution, the 
phase velocity dispersion curve and also wave 
from in time domain. 

2. The method can be used to analyze other 
borehole structure such as elliptical borehole and 
logging-while-drilling acoustic logging with a 
little modification. 

3. As modeling and solving are based on 
finite element method, it is more accurate than 
traditional finite difference method, especially 
when the structure is irregular. 
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