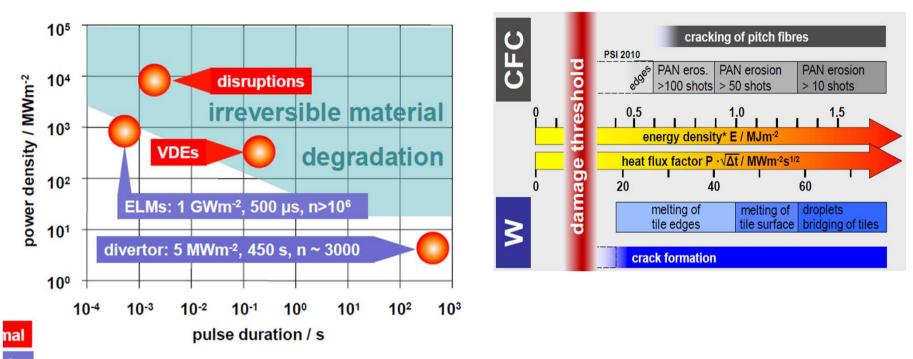


COMSOL CONFERENCE 2014 BANGALORE

Estimation of Tungsten melt-zone size occurred during transient heat loads using COMSOL Multiphysics

Presented by Yashashri Patil S. S. Khirwadkar, S. Belsare Institute For Plasma Research , Bhat Gandhinagar-Gujarat-382428

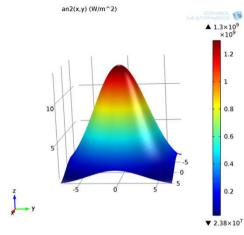


Outline

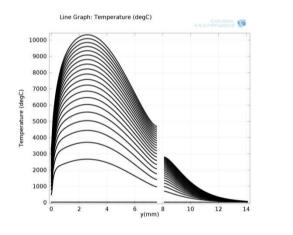
Introduction and Objective

- Tungsten melt-zone size calculation using COMSOL Multiphysics simulation
- Tungsten melt-zone size calculation by analytical equations
- Tungsten melt-zone size measurement by MATLAB image processing
- Conclusion

Introduction and Objective


Transient heat load events are spontaneously occurred in the fusion reactor.

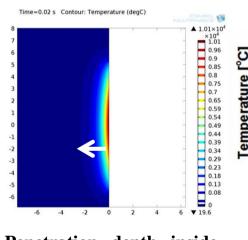
Tungsten is a prime plasma facing material in present as well as future fusion reactors. Melting threshold of the pure tungsten is ~ 20MW/m²t^{0.5}


* The Objectives of this work is to estimate the size of tungsten melt-zone formed during the transient heat load event simulated using the high power electron beam system.

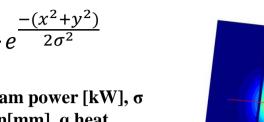
R. A. Pitts et al., Phys. Scr. T138 (2009) 014001 *J. Linke et al, Nucl. Fusion* 51 (2011) 073017

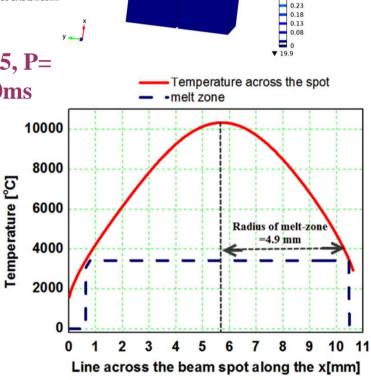
Tungsten melt-zone size calculation by COMSOL simulation

3D plot of Gaussian heat flux used for simulation



Temperature across the beam spot along the y direction for all time steps Gaussian function


$$I(x,y) = \frac{P}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$


Where, P Total beam power [kW], σ standard deviation[mm], q heat flux [W/m2], FWHM of Gaussian = 2σ

Present case $\sigma = 3.5$, P= 100kW, time= 20ms

Penetration depth inside tile = 1.8mm

3D – Temperature contour plot

▲ 1.01×10⁴

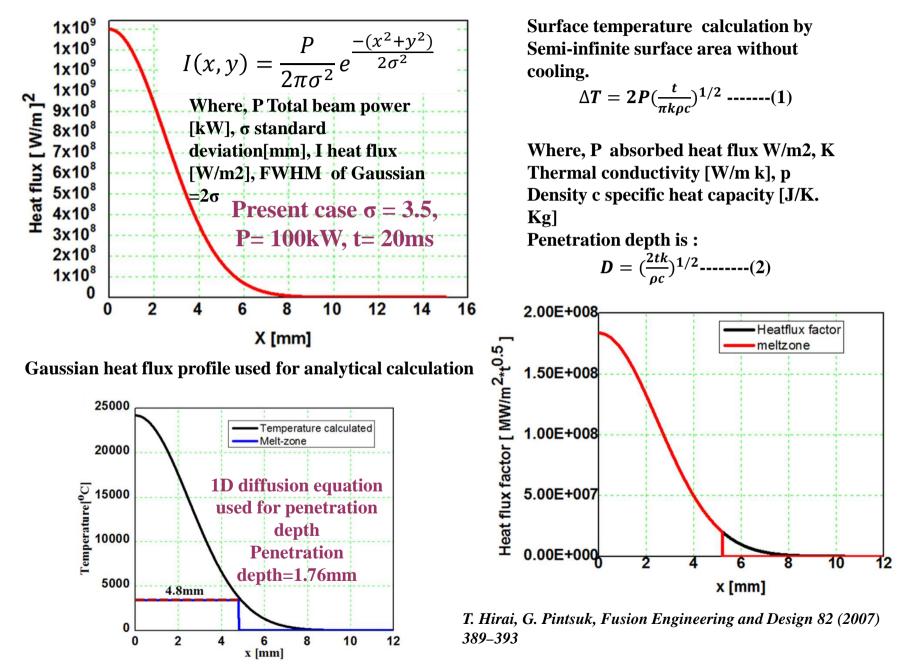
×10⁴ 1.01

> 0.9 0.85 0.8

0.65

0 49

0 44


0.39

0.29

Time=0.02 s Contour: Temperature (degC)

Radius of a Tungsten melt-zone by COMSOL simulation study is equal to 4.9mm

Tungsten melt-zone size calculation by analytical equations

Tungsten melt-zone size measurement by MATLAB image processing

Beam spot melted zone		Image: Control of the setimated radius is 7.084 mm		MATLAB Script for estimation of beam spot size and melt zone
Radius of melt zone by MATLAB program		Radius of beam spot by MATLAB program		<pre>dim=size(BW); r=dim(2); col=round(dim(2)/2)-59; row=find(BW(:,col),1);</pre>
R= 3.959 mm	Experimentally measured Radius of Tungsten melt- zone	Tungsten melt-zone radius calculated by Analytical solution & Heat flux factor	Tungsten melt-zone radius calculated by Comsol Multiphysics	<pre>connectivity = 8; num_points = 850; contour = bwtraceboundary(BW, [row, col], 'N', connectivity, num_points); imshow(I); hold on; plot(contour(:,2), contour(:,1),'g','LineWidth',1); x = contour(:,2); y = contour(:,1); % solve for parameters a, b, and c in the least-squares sense by % using the backslash operator abc = [x y ones(length(x),1)] \ -(x.^2+y.^2); a = abc(1); b = abc(2); c = abc(3); % calculate the location of the center and the radius xc = -a/2; yc = -b/2; radius = sqrt((xc^2+yc^2)-c);</pre>
	4 mm	4.8 mm	4.9mm	

Conclusion

Effective area of the Gaussian heat pulse where the heat flux factor greater than equal to the tungsten melting threshold factor ~ $20MW/m^2t^{0.5}$ is responsible for melting of the tungsten surface.

THANK YOU