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Abstract:  
 

Silicon wafers represent key elements in modern 

microelectronics or photovoltaics. Technological 

fabrications of wafers with large diameters (e.g. 

300…450 mm) allow an efficient realization for 

integrated circuits at low cost. However, this 

material shows a high sensitivity to vibrations 

that strongly depend on the positioning as well as 

orientation of a wafer in a mounting, realized e.g. 

by single fixed points (typically four [1]) located 

at the rim of the device.   

Numerical calculations of the modes in 

dependence of variable boundary conditions are 

thus of high importance for the optimization of 

handling of wafers during mounting and storage.  
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1. Introduction 
 

The influence of the mounting conditions of 

Silicon wafers on mechanical oscillations is 

relevant for the material deformation and 

mechanical load.   

Numerical simulations of oscillating behavior 

and  mechanical deformation  allows,  for given 

configurations,  the analysis of possible 

eigenfrequencies as well as an estimation of the 

sensitivity to parameter changes leading to a 

prediction of device behavior and  a  

determination of critical parameter regimes.  

We performed simulations of Silicon wafers of 

circular symmetry with diameters in the regime 

150 mm to 450 mm. For these geometries we 

systematically varied the number and positioning 

of fixing point at the rim as realized in typical 

experimental situations [1]. It could be shown, 

that the vibration frequencies shift with changes 

in the mounting. Furthermore the mode shapes 

can be controlled by suitable positioning and 

orientation of the wafer in the mounting in 

agreement to typical experimental observations. 

In particular, a deliberately chosen mounting 

configuration may stabilize the system and allow 

the suppressing of oscillations.  

This paper is organized as follows: In section 2, 

the continuum mechanical description is 

summarized, section 3 explains the usage of 

COMSOL, sections 4 and 5 show simulation 

results for variations in boundaries and material 

symmetry, section 6 concludes the article. 

 

 
 

 

Figure 1. Wafer geometry: (a) symmetric and          

(b) asymmetric boundaries.   
 

 

 

2. Governing equations 
 

Generally, deformation of a continuum can be 

described by the displacement vector 

( , ) ( , )t t= −u X x X X   defined as difference 

between spatial variables x  and material 

coordinates X , i.e. pointing from the reference 

position to the current position. In material 

coordinates (Langrangian formulation) [2,3] we 

can furthermore define the deformation gradient 

as /= ∂ ∂F x X  or, in components, 

/ij i jxF X= ∂ ∂  The total strain tensor can be 

expressed in terms of the displacement gradient 

as [2,3] ( )1
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Starting from Hooke’s law which assumes a 

linear response of a deformable continuum to 

tension one can write the linear relation between 

tension t  and total strain tensor ε  as =t Cε   

or, in components, as 
ij ijkl klt C ε= with the 

elasticity tensor C  [2,3] which can, due to the 

symmetry be represented by a 6 6×  matrix as  
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where we have  used the Voigt notation [2,3] for 

the elastic stiffnesses of the material  (i.e. 

11 1111
C C= , 

12 1122 2211
C CC = =  etc.).  

For Silicon, which is an orthotropic material, we 

have 
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with 9

11 165, 7 10C = ⋅ Pa, 9

12 63,9 10C = ⋅  Pa, and 

9

44 79,6 10C = ⋅  Pa  

 

 

3. Use of COMSOL Multiphysics 
 

We use COMSOL Multiphysics to set up the 

wafer geometry and include our orthotropic 

material system. Starting for the structural 

mechanics module we chose the solid state 

mechanics and select silicon as basis material. 

We use a three-dimensional model with the 

diameter (d1=150 mm, d2=300 mm and d3=450 

mm) and the height (h1=0,675 mm, h2= 0,775 

mm h3= 0,925mm) of the geometrical cylinder as 

global parameters. For simulations with 4 fixed 

boundary points (4-point-mounting) we 

additionally introduce an angle α between the 

fixed boundaries on both sides (see Fig. 1). 
For a crystal cut perpendicular or parallel to the 

crystal axis we can directly start with the elastic 

parameters provided (corresponding to i.e. a 

Silicon wafer in [100] direction, where the 

brackets refer to the Miller indices [4] of a 

particular plane). For an arbitrary cut direction 

(simulating e.g. a [111] wafer) we additionally 

rotate the local material coordinate system with 

respect to the wafer geometry by introducing a 

local coordinate system.  This allows us to 

investigate the influence of anisotropy on the 

eigenmodes of the system.   

 

 

4. Frequency Analysis 

 

We investigate the eigenfrequencies in 

dependence on number of fixed boundaries 

and angle α  between the fixed boundaries 

for the situation of a 4-point-mounting. Fig.2 

summarizes for the five lowest modes the 

dependence of the maximum displacement 

and the frequencies on the number of fixed 

boundary points (equidistantly positioned at 

the rim of the device, wafer diameter: 300 

mm) as realized in a typical mounting [1]. 

The values converge to the analytical 

solution of a completely clamped wafer, i.e. 

Dirichlet boundary condition. For four-

point-mountings adding a variable fifth 

point on request may reduce unwanted 

oscillations if a system frequency is close to 

one of the wafer eigenfrequencies.  

 

 
Figure 2. Wafer mounting with variable number of 

fixed boundary points. 
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Figure 3: Displacement (a) and frequencies (b) shown 

for the six lowest eigenmodes.  

 

In a next step, we refer to the four-point 

mounting and symmetrically vary the angle 

between the two points on the left and on the 

right side of the wafer (see Fig. 1 (a)). The 

results shown in Fig. 4 for a 150 mm wafer (a) 

and a 450 mm wafer (b) visualize the 

dependence of the frequency on angle α  

.     
Figure 4: (a) frequency in dependence on angle α  for 

a wafer diameter of 150 mm (a) and 450 mm (b).   

Generally, the lower modes are only slightly 

distorted (for a visualization see Fig. 5) whereas 

modes at higher frequencies may significantly 

change their form when the boundary conditions 

are changed.   

 

  

  
 

 
Figure 5: snapshots of a mode for  α  = 30° (left, 

top), 40°(right, top), 50°(left, bottom) and 60° (right, 

bottom) degrees. 

 

As an alternative one can chose a configuration 

with a constant angle of 30° and move only one 

pair of boundary points (i.e. left side, see Fig. 

1(b)). This configuration, however, leads for 

large wafer diameters to strong deformations 

caused by the asymmetry (Fig. 6).    

 

 

 
Figure 6: distribution of the displacement for an 

asymmetric mounting. 
 

 

5. Influence of Anisotropy 

 
For a demonstration of the influence of the 

anisotropy of the material we simulate a Silicon 

wafer oriented in [111] direction by rotating our 

local material system with respect to the global 

system leading to corresponding changes in the 

elasticity tensor. As a consequence the wafer 

reacts rather critically to rotations within a 4-

point mounting. As an example, Figs. 7 and 8 

visualize the dependence of the modes on the 

rotation angle of the wafer within the mounting 
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plane ( 0 45β °= … ) for a four-point mounting 

with 50α °=  (Fig. 7) and 70α °=  (Fig. 8), 

respectively. The figures clearly show that a 

larger value for α leads to a higher sensitivity to 

rotation in the mounting plane. A configuration 

with smaller α may thus stabilize the system.  

 

 
 
Figure 7: 1st, 5th  and 10th eigenmode for different 

orientations (rotation angle  β  ) of the wafer plane 

within the mounting and 50α °= . 

  
Figure 8: 1st, 5th  and 10th eigenmode for different 

orientations (rotation angle  β  ) of the wafer plane 

within the mounting and 70α °= .  

 

 

6. Conclusions 
 

We investigated the dependence of a circular 

silicon wafer on size and boundary conditions as 

realized in typical wafer mountings. Simulations 

using COMSOL MULTIPHYSICS®  reveal that 

the eigenfrequencies of wafers with a finite 

number of fixed positions at the rim (Dirchlet 

boundaries) may strongly depend on both, 

number and position of fixed boundary points at 

the rim of the device. In particular, the 

frequencies as well as the amount of deformation 

can be adjusted by suitable positioning of the 

fixing points of a mounting.  

Furthermore, the anisotropy of the Silicon wafer 

material may cause a complex dependence on the 

wafer’s orientation within a mounting.  

The control or even suppression of oscillations in 

Silicon wafers is of large importance for the 

optimization of the mounting and handling of 

wafers during processing, transport and storage. 

The results of this work are thus relevant for 

future developments.   
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