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Abstract: The aim of this study is to predict the 

extent of damping (measured as Q-factor) of a 

single mass cantilever energy harvester, at 

various cavity pressure, using the commercial 

finite element tool, COMSOL. Varying the 

pressure from atmospheric to near vacuum 

conditions, we calculate the Q-factor of the 

structure due to squeeze film, slide film, and 

thermo-elastic damping. Our results show that at 

near vacuum pressure, the air damping (squeeze 

and slide film) is negligible and, rather, the 

intrinsic damping of the structure (thermo-elastic 

damping) predominates.  In the transitional 

region – transition between viscous and 

molecular flow—squeeze film damping becomes 

the predominant mechanism and the Q-factor 

demonstrates a linear response to pressure in the 

log-log scale. The micro-scale thickness of the 

cantilever implied a negligible slide film 

damping between the cantilever arm and the 

cavity sidewall. In the viscous and vacuum 

regime – pressures close to atmospheric and 

vacuum conditions respectively— the Q-factor 

shows a minimal response to pressure. 

 

Keywords: Damping, Q-Factor, Energy 

Harvester, Squeeze film. 

 

 

1. Introduction 
 

For micro-electro-mechanical systems (MEMs) 

operating in non-vacuum conditions, air damping 

is the most dominant damping mechanism [1]. 

Such damping results in a loss of the device 

performance. The extent of the performance loss 

is highly dependent on the cavity pressure which 

dictates the degree to which the oscillating 

device is damped. This topic has been widely 

studied with a common aim of reducing the 

damping effect of the cavity’s fluid [2, 3, 4, 5]. 

Some experimental studies even provide 

constitutive equations for predicting the effect of 

air pressure on viscous damping but these 

relations only apply to a cantilever with its mass 

evenly distributed across its area [6]. In 

predicting this phenomenon for complex shaped 

resonators, the interaction between the ambient 

fluid and the energy harvester’s structure has to 

be either studied experimentally or 

computationally.  The repetitive nature of 

optimization studies makes such experimental 

efforts costly. Similarly, the multi-physics nature 

of this problem coupled with the device’s 

irregular shape make the analytical modeling 

approach unfeasible necessitating the use of 

computational fluid-structural interaction (FSI) 

models.     

  

There are two approaches to developing FSI 

models: (1) using a single solver with the fluid 

and structural governing equations combined in a 

single matrix (implicit FSI); (2) coupling two 

different dedicated solvers for the fluid and 

structural governing equations (explicit FSI). In 

the first approach, the damping effect of the fluid 

is implicitly modeled using simplified theories 

embedded in the structural dynamics solver. In 

the second approach, the fluid is modeled 

explicitly using a Navier Stoke’s or Molecular 

Flow model. While the single matrix approach 

has an advantage of reducing the computational 

demand due to its simplification, its accuracy 

does not match up to the explicit modeling of 

both physics. 

 

In this study, we use COMSOL to model a single 

mass cantilever energy harvester (see Figure 1) 

operating within the ambient to vacuum pressure 

range. The effect of squeeze-film, slide film, and 

structural damping on the device’s Q-factor was 

investigated at various pressure levels. The 

anchor loss (another source of damping in 

MEMS structure) has been neglected in the 

present study. In COMSOL, we adapt the single 

matrix approach and validate these results using 

both approaches on the ANSYS finite element 

tool. Validation of the modeling parameters was 
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also performed using experimental data from a 

single beam energy harvester. The following 

sections give details on the mathematical models 

applied in each approach and the respective 

results obtained. 

 

 

 
Figure 1: Structure of the modeled MEM energy 

harvester 

 

2. Numerical Model 

 

     The 3D solid mechanics, time dependent 

solver was used for this study. The Aluminum 

Nitride (AIN), Silicon Oxide (SiO) and Silicon 

(Si) layers are all modeled as linear elastic 

materials. The beam has a total length of 

5000μm with a suspended mass length of 

1000μm. The thickness of the SiO, AIN and Si 

layers are 2μm, 1.2μm and 20μm respectively. 

The thickness of the mass is 390μm. All layers 

are constrained to be fixed at the opposite end of 

the mass and a pressure body load is applied on 

the structure. Thin-film damping loads are 

applied to the top and bottom boundaries of the 

structure to model the squeeze film damping, and 

at the sides of the structure to model slide-film 

damping (direction tangent to the movement of 

the structure). The thin-film element is inbuilt in 

COMSOL, and models viscous fluid flow 

behavior in small gaps. If this gap is between a 

fixed surface and a moving structure, the thin-

film elements model the effect of a squeeze/slide 

film between the fixed surface and the moving 

structure. The element behavior is based on the 

Reynolds squeeze film theory, and the theory of 

rarefied gases, which are the theoretical 

background for analyzing fluid structural 

interaction for microstructures [7, 8]. This 

approach allows avoidance of an explicit 

Computational Fluid Dynamics (CFD) model, 

while modeling squeeze film damping of MEM 

cantilever. 

 

Wall spacing of 100μm and 140μm are 

applied for the squeeze and slide film damping 

boundary loads respectively. The regime of flow 

is estimated using the Knudsen number (Kn 

=ʎ0 /ℎ) [9] . At high pressures (Kn < 0.1), the 

flow is in the continuum region and hence 

modeled using the Reynolds equation for 

compressible gas with the non-slip walls 

approximation: 

 
𝜕

𝜕𝑡
(ρh) +  ∇𝑡 . (hρ𝑣𝑎𝑣)  = 0     (1) 

 

Where, ʎ0 is the mean free path, ρ is the fluid 

density, h is the distance between the two plates 

and 𝑣𝑎𝑣 represents the mean velocity of the flow 

in the reference plane. 𝑣𝑎𝑣  for the no-slip 

boundary condition (slip length of the 

resonator’s wall (𝑙𝑠𝑤) and cavity’s base (𝑙𝑠𝑏) are 

both 0)  is defined as the combination of the 

Couette and Poiseuille flow as follows: 

 

 𝑣𝑎𝑣  =
1

2
(v𝑤,𝑡 + v𝑏,𝑡) − (h/12 𝜇) ∇𝑡 . 𝑃𝑓 (2) 

 

Where, 𝑃𝑓 is the fluidic flow pressure, 𝜇  is the 

fluid’s viscosity and,  v𝑤,𝑡 and v𝑏,𝑡 are the 

resonator’s wall and cavity’s base velocity 

respectively. 

 ` 

For low pressure regimes (Kn >0.1), equation 1 

is modified, by assuming the fluid abides by the 

ideal gas law, and the total pressure is 𝑃𝑡𝑜𝑡 =
𝑃𝑎 +  𝑃𝑓 (where   𝑃𝑎 is the atmospheric pressure), 

to the following: 

 
𝜕

𝜕𝑡
(𝑃𝑡𝑜𝑡ℎ) +  ∇𝑡 . (h𝑃𝑡𝑜𝑡𝑣𝑎𝑣)  = 0    (3) 

 

In this regime, the flow’s velocity cannot be 

treated using the continuum Navier Stokes. Thus, 

the linearized Boltzmann equation for isothermal 

flow is utilized. From the solution  of the 

Boltzmann equation, although the slip boundary 

condition is fundamental to the flow of rarefied 

gasses, the Couette contribution to the bulk fluid 

velocity is similar to that of the no-slip condition 

( 
1

2
(v𝑤,𝑡 + v𝑏,𝑡) ). However, in this pressure 

range, Poiseuille contribution to the fluid’s 

average velocity is handled by the approach of 

P SiO Layer 

AIN Layer 

Si Layer 
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Fukui and Kaneko [10] which uses an empirical 

fit to the flow to deduce the fluid’s average 

velocity as: 

 

𝑣𝑎𝑣  =
1

2
(v𝑤,𝑡 +  v𝑏,𝑡) −  (

ℎ2

12𝜇𝑒𝑓𝑓

 ) ∇𝑡. 𝑃𝑓   (4) 

 

Where, 𝜇𝑒𝑓𝑓 is the fluid’s effective dynamic 

viscosity, which according to Veijola [11] is 

estimated as:   

 

𝜇𝑒𝑓𝑓 =  
𝜇

1+9.638𝐾𝑛1.159        (5) 

 

This treatment of  𝜇𝑒𝑓𝑓 is known in the 

COMSOL platform as the Rarefied Total 

Accommodation. Dynamic viscosity (𝜇) and 

Mean Free Path (ʎ
0
) values of 1.85e-5Pa.s and 

68nm were used respectively. It is important to 

note that, for squeeze film, only Normal-pressure 

forces were considered, while only Couette 

forces were considered for the slide film model. 

 

 Thermo-elastic damping was taking into 

account by coupling a thermo-elasticity terms –

derived from the first law of thermodynamics to 

the Solid Mechanics interface. This is enabled by 

including a heat source term in the standard 

energy equation which couples the heat transfer 

problem with the structural problem and vice 

versa [12] 

 

 To validate our modelling approach and 

boundary conditions, we intially modeled the 

experimental setup of Pandey and Pratap [3] to 

compare experimetnal results with our 

calculations. To ensure that numerical damping 

was avoided, prior to setting up the squeeze, 

slide and thermo-electric damping loads, the 

beam was set to oscilate with, a strict time 

stepping criteria and a tolerance of 0.001.  

 

Upon validating our model, the displacement-

time response of the resonator is calculated with 

the pressure varying from near vacuum to 

ambient conditions. From this response, we 

define the logarithmic decrement (δ)  using the 

ratio of two peak heights, 𝑦(𝑡𝑛),  seperated by 𝑛 

succesive cycles of period 𝑇 [13]: 

 

𝛿 =  
1

𝑛
ln

𝑦(𝑡𝑛)

𝑦(𝑡𝑛+𝑛𝑇)
        (6) 

 

The damping ratio ϛ is then estimated from 

𝛿 using the following formulae: 

 

ϛ =  
𝛿

√4 𝜋2+ 𝛿2
         (7) 

 

The effect of pressure variation on the damping 

of the beam is then estimated using the Q factors 

which is calculated as: 

 

𝑄 =  
1

2ϛ
                                       (8) 

 

The calculated pressure dependent Q factors are 

compared with estimates from ANSYS using 

both implicit and explicit FSI calculations. 

 

3. Results 

 
Figure 2 shows the time domain response of the 

beam oscillating in the absence of any damping 

load using different order of magnitudes of the 

backward differential formulas (BDF). In the 

absence of damping loads, the resonator is 

expected to oscillate indefinitely with a constant 

amplitude. It can be observed that this is not the 

case using the 1st and 3rd order BDF. In both 

cases, there seem to be a damping of the 

resonator. This damping can be called 

“numerical damping” as it is solely due to the 

truncation of the BDF at lower order of 

magnitudes. It would be misleading to use lower 

order BDFs to model the squeeze, slide, and 

thermo-elastic damping as this numerical 

damping would be wrongfully attributed to the 

viscous or material damping. 
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Figure 2: Effect of BDF order on Numerical 

damping 

 

Modeling the cantilever resonators adapted by 

Pandey and Pratap [3], we replicate their 

experimental results to investigate the effect of 

cantilever length on the device’s first mode Q–

factor. Figure 3 shows a good agreement 

(maximum of 3% deviation) between the 

measured and calculated results, which validates 

our modeling approach. 

 
 

Figure 3: Modeling technique validation: effect 

of cantilever length on Q factor 

 

Similarly, Table 1 shows that our calculated Q-

factors for the first three modes of the cantilever 

resonator [3] are in good agreement with our 

model’s estimates of same. A maximum 

deviation of 6% was observed at the 3rd mode. 

This suggests the fitness of our methodology in 

performing Q factor calculations up to the third 

mode. 

 

Table 1: Q factor of first three modes 

  
Model's 
Q Factor 

Measured 
Q Factor  

Q Factor 
Error 

First Mode 1.21 1.20 1% 

Second 

Mode 7.92 7.58 5% 

Third Mode 19.55 18.52 6% 

 

To ensure our results are independent of the 

computational grid size, mesh sensitivity 

analyses were performed. The modal frequencies 

and Q factor were estimated while the grid size 

was increased from 10 elements to 100000 

elements. Figure 4 shows that the modal 

frequency results converge at about 500 

elements, and increasing the number of elements 

above this value does not affect the calculated 

modal frequencies.  

 

0

1

2

3

4

5

6

7

8

100 200 300 400

Q
 f

ac
o

tr
 (

A
m

b
ie

n
t 

P
re

ss
u

re
)

Cantilever length (micro meters)

Experiment
Model

Excerpt from the Proceedings of the 2015 COMSOL Conference in Grenoble



 

 
Figure 4: Mesh sensitivity analysis for present’s 

study energy harvester: Modal Frequency 

 

However, Figure 5 shows that a higher number 

of elements are required for the Q factor 

convergence. Hence, for studies focused on 

predicting damping, it would be misleading to 

perform the mesh sensitivity analysis based on 

the modal frequencies. Similarly, Figure 6 and 

Figure 7 demonstrate the dependence of the first 

mode frequency and Q factor on the utilized time 

step. Again, it is observed that the first mode 

frequency converges before the Q factor. The 

accuracy of a resonator’s transient model is 

highly dependent on the time step utilized as this 

dictates the ability of the model to catch certain 

frequencies of oscillation.  

 

 
Figure 5: Mesh sensitivity analysis for present’s 

study energy harvester: Q factor 

 

If the time step is greater than the inverse of the 

first modal frequency, no oscillation is captured 

by the transient model. Hence, the model is 

incapable of estimating the modal frequency or 

the Q factor. As the time step is reduced, the 

device’s oscillation is progressively captured. 

However, the accuracy of the transient 

response’s amplitude is also highly dependent on 

the resolution of the time points. If the time step 

utilized is not small enough to capture the exact 

peak, an extrapolated peak is used to estimate Q 

factor. Further reducing the time-step affects the 

computed Q factor.  Figure 7 demonstrates this 

trend of further increment of Q factor with a 

reduction in time step below the converged 

frequency time step. However, we observed from 

our study that Q-factor convergence is attained 

when a time step less than 𝑻𝟏/𝟐𝟎𝟎𝟎 is used. 

Where: 𝑻𝟏 is the period of the first mode 

frequency. 

 

 
Figure 6: Time step sensitivity analysis for 

present’s study energy harvester: Modal 

Frequency 

 

 
Figure 7: Time step sensitivity analysis for 

present’s study energy harvester: Q factor 

 

Figure 8 shows the effect of varying the cavity 

pressure on the resonator’s Q factor. Between 

0.00001-0.001 Torrs, the device’s Q factor is 

observed to be independent of cavity pressure. It 

is believed that at such low pressure, the air 

damping is negligible. Therefore, further 

reduction in air pressure has no significant effect 

on damping. The high Q factor at such pressure 

suggests that the intrinsic (thermo-elastic) 

damping is dominant in this region. As thermo-
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elasticity is not dependent on pressure, the Q 

factor in this region is not expected to be 

dependent on pressure. 

 

 
 
Figure 8: Q factor as a function of cavity 

pressure. 

 

As the cavity pressure increases above 0.001 

Torrs, air damping becomes a dominant 

mechanism. However, at 0.001 Torrs the air 

molecules are still sparsely populated in the 

cavity and little or no interaction between these 

molecules is expected.  As the pressure 

increases, interaction between air molecules 

increases which increases the structure’s 

damping. At pressure levels above 10 Torrs, air 

molecules are now densely packed and viscous. 

As viscosity is not dependent on pressure, the Q 

factors above this pressure do not vary 

significantly with pressure. This result suggests 

that three different regions exist between vacuum 

pressure and ambient conditions, which 

correlates with previous experimental studies [6].  

 

Furthermore, Figure 8 shows a good agreement 

between estimates from COMSOL and ANSYS 

using the implicit FSI approach. The explicit FSI 

approach was also considered in ANSYS and 

only a 7% deviation in the computed Q factor 

was observed at ambient pressure. However, the 

computational time is 15 times more than that 

required for the implicit FSI approach in both 

COMSOL and ANSYS. As ANSYS does not 

currently have a molecular flow model in its 

fluid dynamics package (Fluent), pressure 

reduction could not be modeled using the 

explicit FSI approach. COMSOL’s explicit FSI 

approach has also proven to be computationally 

costly when the transient study is used. 

Currently, a frequency domain study is not 

available in COMSOL’s fluid dynamics package. 

It is suggested that development in this domain 

should be considered as this could reduce the 

computational time for such explicit FSI 

computations. Approximating the relatively thin 

AIN and SiO layers by using a single Si layer 

with an effective modulus also proved to be 

helpful in reducing the computational cost of the 

explicit FSI approach. 

 

4. Conclusions 

 
In this study, we have used COMSOL to predict 

the extent of damping (measured as Q-factor) of 

a single mass cantilever energy harvester, at 

various cavity pressure. Model validations were 

performed using experimental data. Mesh and 

times step sensitivity analyses showed that the 

modal frequencies converges quicker than the Q 

factor.  Our results suggest that squeeze film 

damping dominates at high pressure while the 

thermo-elastic damping is dominant at low 

pressures. The micro-scale thickness of the 

cantilever and relatively large side wall gap 

implied a negligible slide film damping between 

the cantilever arm and the cavity sidewall. In the 

viscous and vacuum regimes – pressures close to 

atmospheric and vacuum conditions respectively 

— the Q-factor shows a minimal response to 

pressure. 
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