Modelagem da Perda de Umidade da Banana durante o Processo de Secagem

J. P. Wojeicchowski ¹, A. P. Ramos ², J. S. Sousa ¹, L. G. Maciel ¹, M. M. Pariona ¹.

1. Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil 2. Universidad Peruana Unión, Juliaca, Peru

Introdução: A secagem, que envolve transferência simultânea de massa e calor, é uma prática comum na indústria de alimentos. Nos processos que a partir da utilização de ar quente, ocorre transferência de calor do ar para o produto, uma vez que existe um gradiente de temperatura. Ao mesmo tempo, há transferência de massa para o ar na forma de vapor de água (PIAIA, 2009). Esse fenômeno é regido pela 2ª Lei de Fick em regime não estacionário, ao passo que a Lei de Fourier está relacionada à transferência de massa. Neste trabalho, bananas Caturra foram secas em estufa com circulação de ar a 60 °C. O objetivo foi aplicar os modelos de perda de umidade e simular o processo no COMSOL Multiphysics.

Métodos Computacionais:

Equação de Fourier:

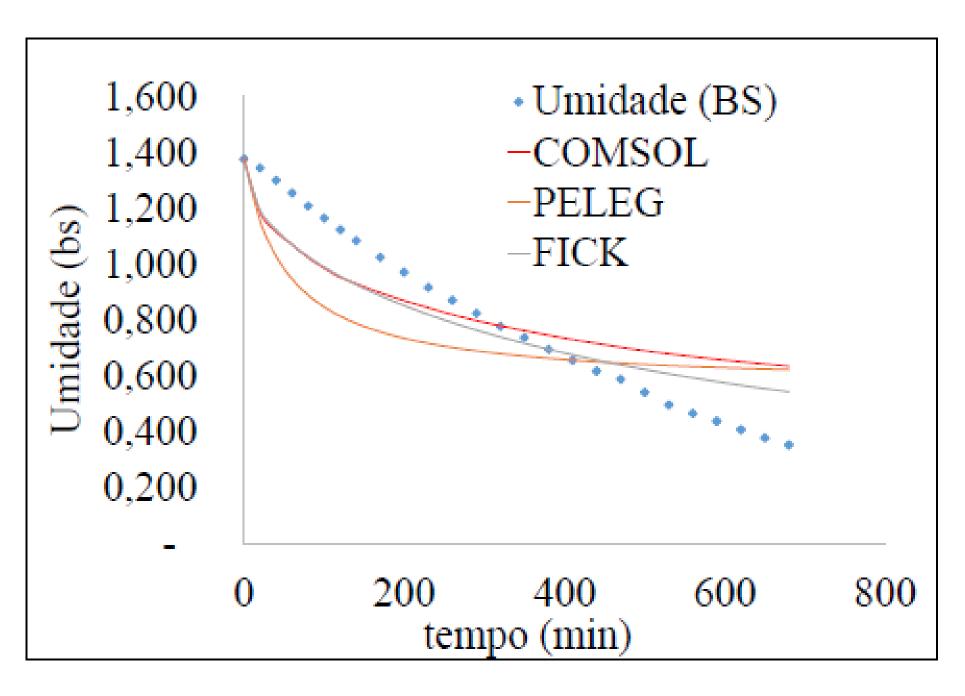
$$\rho. C_p. \frac{\partial T}{\partial t} + \rho C_p u. \nabla T = \nabla (k \nabla T) + Q$$

Segunda Lei de Fick:

$$\frac{\partial C_i}{\partial t} + \nabla(-D_i \nabla C_i) + u \cdot \nabla C_i = R_i$$

Para as condições de contorno de transferência de calor e massa foram considerados fluxo nulo na região de simetria e condição convectiva na superfície do produto, também foi determinada a umidade inicial da banana, expressa na forma de Concentração de água (mol/m³).

Determinação do coeficiente difusivo (m²/s)


Fick (BROOKER
$$RU = \int_{i=1}^{\infty} \frac{4}{\lambda_n^2} e^{\left(\frac{-\lambda_n^2 \cdot D_{ef}t}{r^2}\right)}$$
 et al, 1992)

Modelo	Equação	
Peleg	$U_t = U_0 - \frac{t}{K_1 + K_2 \cdot t}$ $RU = e^{-K \cdot t^n}$	
Page	$RU = e^{-K.t^n}$	
Lewis	$RU = e^{-K.t}$	
H. Pabis	$RU = A.e^{-K.t}$	
Weibull	$RU = e^{-\left[\left(\frac{t}{B}\right)^A\right]}$	
Relação de Umidade	$RU = \frac{U_t - U_{eq}}{U_0 - U_{eq}}$	

Tabela 1. Modelos empíricos utilizados na modelagem.

Modelo	Determinação (R²)	Pearson (r)	Erro
Peleg	0,62	0,79	4,64
Page	0,97	0,98	0,407
Lewis	0,95	0,97	0,962
H.Pabis	0,95	0,97	0,740
Weibull	0,97	0,98	0,406
Fick	0,88	0,94	2,85
COMSOL	0,84	0,91	3,54

Tabela 2. R², r e soma do erro para os modelos.

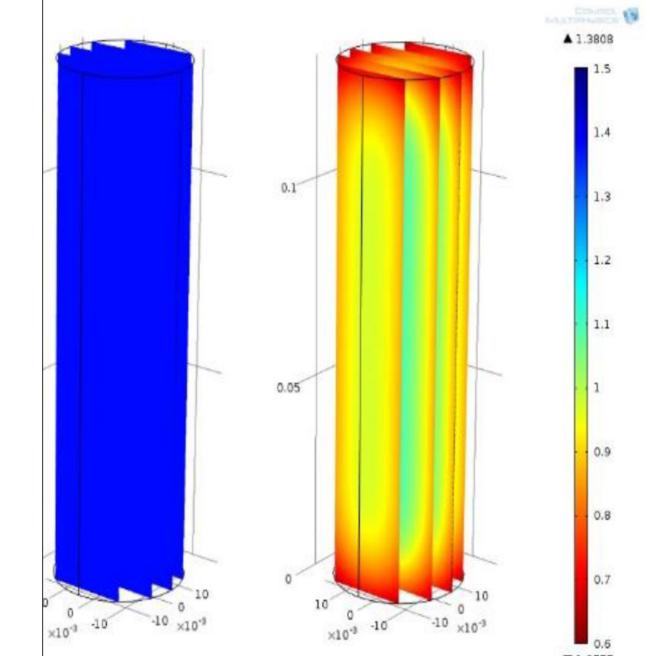


Figura 1. Curvas modeladas e dados experimentais da perda de umidade.

Figura 2.
Representação 3D do
Início e final da
secagem.

Conclusões: O Coeficiente convectivo de transferência de massa e o Coeficiente difusivo obtidos foram, respectivamente 1,25.10⁻⁷ m/s e 1,89.10⁻⁹ m²/s . Mesmo com aproximações feitas o COMSOL mostrou-se eficaz na simulação da secagem de banana.

Referências:

1. PIAIA J.C.Z, Secagem da linguiça calabresa: Experimentação e modelagem 3D aplicadas a fornos industriais, *Tese Doutorado*, 125 (2009).