

"Design and development of MEMS based sensor for blood group detection"

Authors

Pyati vidhyashree

Pooja Naragund

Sushmita Katti

Vaibhavi Saradesai

Kaushik M.

Dr. Anil V. Nandi

Dr. Vaishali B. Mungurwadi

COMSOL CONFERENCE 2015 PUNE

Agenda

- Introduction
- Detailed design
- Conclusion and future scope
- References

Introduction

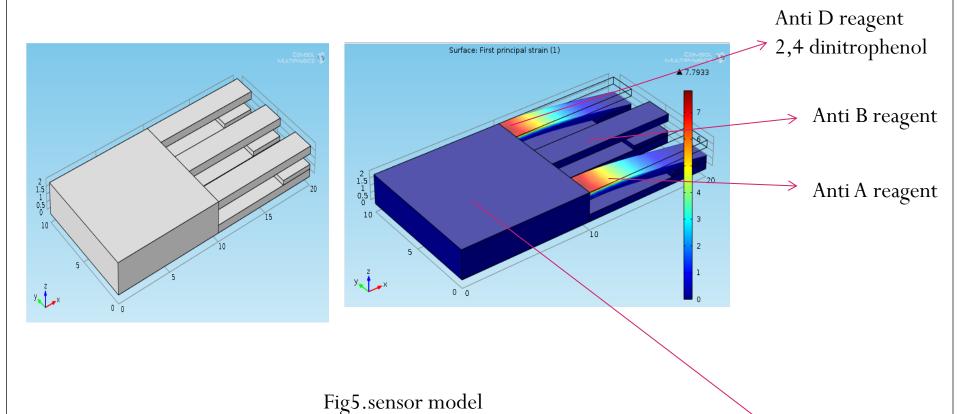
- Blood group investigation is the most common test performed very frequently under different circumstances.
- This lead to the design of MEMs based cantilever structure intended for blood group detection.
- A sensing layer (antibodies) which when comes in contact with blood sample (antigens) results in coagulation. Due to this effect the cantilever deflects and indicates particular blood group.

Objectives

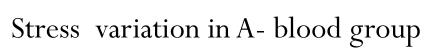
- Blood group detection kit should be environmentally benign.
- Must give results quickly
- It should be portable(handy)
- Should be inexpensive
- Can be easily distributed

Attributes

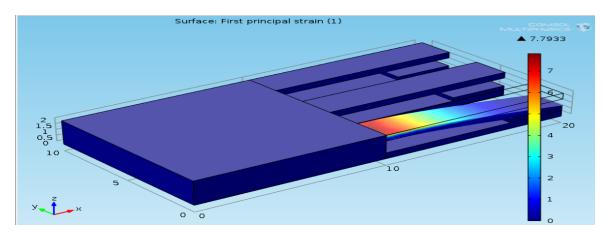
- Quick results
- Flexibility
- Economy
- Portable
- In vitro
- User safety
- Eco friendly



Constraints


- Size of the device
- Determination of RBC's, WBC's and platelets count quantitatively
- Layer sensitivity
- Environmental factors

Sensor design in COMSOL Multiphysics 4.2



Cantilever base

Stress	Deflection
0.01	0.7
0.02	0.5
0.03	0.4
0.04	0.3
0.05	0.2
0.06	0.1
0.07	0

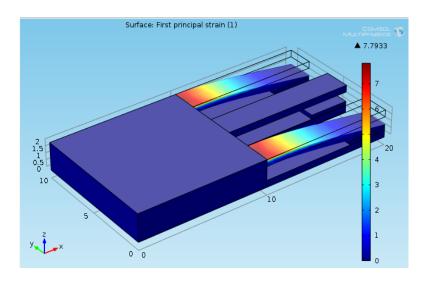


Fig.7. A+ blood group

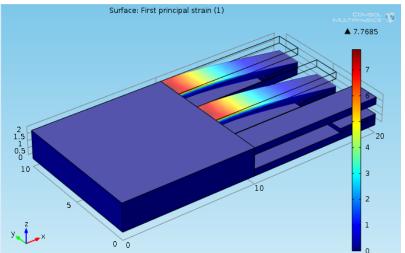


Fig.9. B+ Flood group

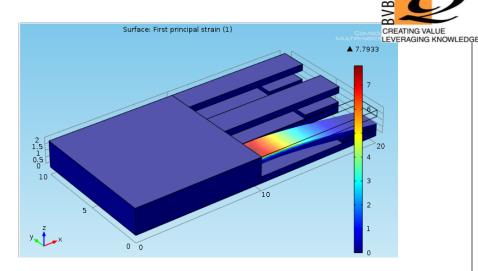


Fig.8. A- blood group

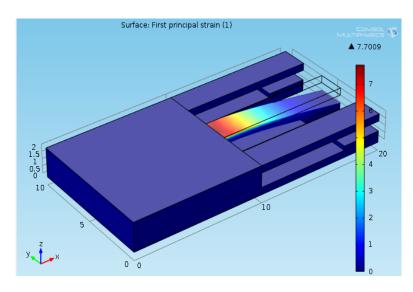


Fig.10. B - blood group

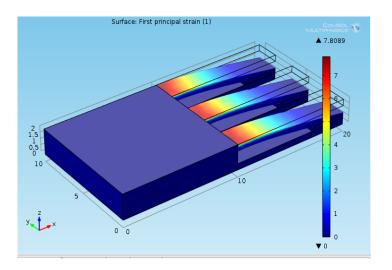


Fig.11. AB+ blood group

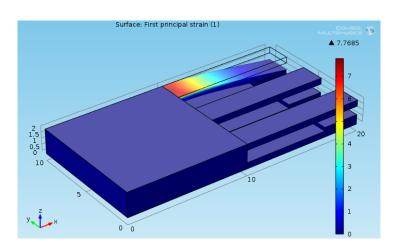


Fig.13 O+ blood group

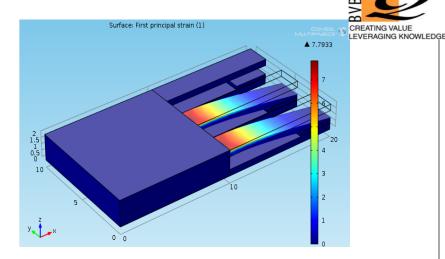


Fig.12.AB - blood group

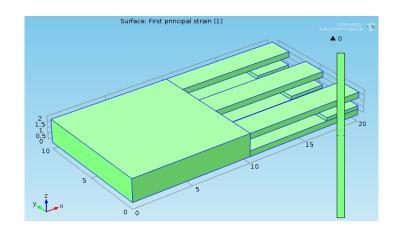


Fig.14.O- blood group

Display

Blood group	First cantilever	Second cantilever	Third cantilever
A+	1	0	1
A-	1	0	0
B+	0	1	1
B-	0	1	0
AB+	1	1	1
AB-	1	1	0
O+	0	0	1
О-	0	0	0

Conclusion

- •Blood group detection sensor is a device, which gives electrical output and can be measured easily.
- •Using this we can get quick results

Future scope

- •The application can be extended to count the RBC's ,WBC's and platelets.
- •Durability of product can be improved

CREATING VALUE LEVERAGING KNOWLEDG

K.L.E. Society

References

- 1. "Design of micro cantilever based bio-sensor with digital feedback control circuit", by Jayu. P. Kalambe and Rajender M Patrikar, department of electronics engineering, visveswaraya national institute of technology, Nagpur, Maharashtra, India...
- 2. "A prototype for blood typing based on image processing" by Ana Ferraz, Filomena soares, R & D centre, Algoritmi, University of Minho, Portugal.
- 3. "A novel approach in identification of blood group using laser technology", by Priyadarshini, Ramya, kalayvarasi, kalpana, suthathira, Tamilnadu, India.
- 4. "current technology of chlorine analysis for water and waste water" by Danial.L.Harp.

Thank you