
Presented at the COMSOL Conference 2008 Hannover

FINITE ELEMENT ANALYSIS OF FERROFLUID COOLING OF HEAT-GENERATING DEVICES

Tomasz Strek Institute of Applied Mechanics Poznan University of Technology ul. Piotrowo 3, 60-965 Poznan, Poland www.strek.strefa.pl

CONTENTS

- Magnetorheological fluid 3D structure.
- Thermal management and heat generating device.
- Assumptions. Governing equations. Heat transfer in ferrofluid and solid.
- The Kelvin body force for the magnetoconvective flow.
- Dimesnionless equations.
- Formulation of the problem. Ferrofluids flow around the heating device.
- Numerical results.
- Conclusions.
- References.

MAGNETORHEOLOGICAL FLUID 3D STRUCTURE

THERMAL MANAGMENT has become a critical aspect of today's electronic systems, which often include many high-performance circuits that dissipate large amounts of heat. Many of these components require efficient cooling to prevent overheating.

This case examines the temperature field in the ferrofluid and in the electronic component with heat source. The ferrofluid transports heat by convection and conduction. Finally, to approximates the electronic component that requires cooling, the model uses a rectangular block with a given volume heat source. The electronic component transports thermal energy by pure conduction.

ASSUMPTIONS

- The fluid is assumed to be electrically nonconducting so that the ferrofluid flow does not induce any electromagnetic current in it.
- It is assumed also that there is no electric field effects.
- The variation in the magnetic field that could occur due to temperature gradients within the ferrofluid is negligible.
- Anisotropy in fluid properties are negligible.

THE GOVERNING EQUATIONS

The Maxwell's equations, simplified for a non-conducting fluid with no displacement current, become,

$$\nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{H} = \mathbf{0} \tag{1}$$

where **B** is the magnetic induction, **M** is the magnetization vector and **H** is the magnetic field vector. The constitutive relation

$$\mathbf{B} = \mu_0 \big(\mathbf{M} + \mathbf{H} \big) \tag{2}$$

where μ_0 is a magnetic permeability in vacuum.

In the magnetostatic case where there are no currents present it is possible to define a magnetic scalar potential by the relation $\mathbf{H} = -\nabla V_m$. The scalar potential for the magnetic dipole is given by:

$$V_m(\mathbf{x}) = V_m(x_1, x_2) = \frac{\gamma}{2\pi} \frac{x_1 - a}{(x_1 - a)^2 + (x_2 - b)^2},$$
(3)

where γ is the magnetic field strength at the source (of the wire) and (a,b) is the position where the source of the magnetic dipole is located (below the channel).

The momentum equation for magnetoconvective flow is modified typical natural convection equation by addition of a magnetic term

$$\rho_0 \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot \mathbf{S} + \alpha \rho_0 g (T - T_0) \mathbf{k} + (\mathbf{M} \cdot \nabla) \mathbf{B}$$
(4)

where ρ_0 is the density, **v** is the velocity vector, *p* is the pressure, *T* is the temperature of the fluid, T_0 is the reference temperature, **S** is the extra stress tensor, **k** is the unit vector of the gravity force and α is the thermal expansion coefficient of the fluid.

The energy equation for an incompressible fluid which obeys the modified Fourier's law is

$$\rho_0 c \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = k \nabla^2 T + \eta \Phi - \mu_0 T \frac{\partial \mathbf{M}}{\partial T} \cdot \left(\left(\mathbf{v} \cdot \nabla \right) \mathbf{H} \right)$$
(5)

where η is the viscosity and $\eta\Phi$ is the viscous dissipation

$$\Phi = \left(2\left(\left(\frac{\partial v_1}{\partial x}\right)^2 + \left(\frac{\partial v_2}{\partial y}\right)^2\right) + \left(\frac{\partial v_2}{\partial x} + \frac{\partial v_1}{\partial y}\right)^2\right).$$
 ()

The last term in the energy equation represents the thermal power per unit volume due to the magnetocaloric effects.

The heat equation - the mathematical model for heat transfer in solid by conduction is:

$$\rho_s c_s \frac{\partial T}{\partial t} + \nabla \cdot \left(-k_s \nabla T\right) = Q_s \tag{6}$$

Quickly review the variables and quantities in this equation: T is the temperature, ρ_s is the solid density, c_s is the heat capacity, k_s is the thermal conductivity and Q_s is a heat source or heat sink.

The heat source describes heat generation within the domain. We can express heating and cooling with positive and negative values, respectively. Quantity Q_s is defined as power per volume (W/m^3 in SI units).

THE KELVIN BODY FORCE FOR THE MAGNETOCONVECTIVE FLOW

The last term in the momentum equation represents the Kelvin body force per unit volume

$$\mathbf{f} = (\mathbf{M} \cdot \nabla) \mathbf{B}, \qquad (7)$$

which is the force that a magnetic fluid experiences in a spatially non-uniform magnetic field.

In a narrow temperature range, the magnetization vector \mathbf{M} of the magnetic fluid can be expressed as a linearized function of \mathbf{H} and the fluid temperature

$$\mathbf{M} = \chi_m \mathbf{H} \text{ where } \chi_m = \chi_m(T) = \frac{\chi_0}{1 + \alpha(T - T_0)}$$
(8)

is the total magnetic susceptibility, χ_0 is the differential magnetic susceptibility of the ferrofluid.

The magnetic induction vector can be written in the form $\mathbf{B} = \mu_0 (1 + \chi_m) \mathbf{H}$.

DIMENSIONLESS VARIABLES AND NUMBERS

Non-dimensionalised variables and scales are defined as follow:

$$t' = \frac{\kappa}{h^2}t; \quad \mathbf{x}' = \frac{1}{h}\mathbf{x}; \quad \mathbf{v}' = \frac{\mathbf{v}}{v_r} = \frac{h}{\kappa}\mathbf{v}; \quad p' = \frac{p}{\rho v_r^2} = \frac{ph^2}{\rho \kappa^2}; \quad \mathbf{H}' = \frac{\mathbf{H}}{H_r}; \quad H' = \frac{H}{H_r}; \quad T' = \frac{T}{\delta T};$$
$$\eta' = \frac{\eta}{\eta_0}, \quad Q'_s = \frac{Q_s}{Q_0}.$$

Moreover some of the dimensionless ratios can be replaced with well-known parameters:

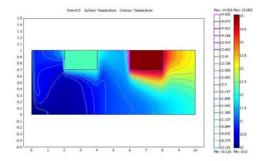
$$Pr = \frac{\eta_0}{\rho_0 \kappa}, Ra = \frac{\alpha \rho_0 g h^3 \delta T}{\eta_0 \kappa}, Ec = \frac{v_r^2}{c \delta \Gamma} = \frac{\kappa^2}{c \delta \Gamma h^2}, Re = \frac{h \rho_0 v_r}{\eta_0} = \frac{\rho_0 \kappa}{\eta_0},$$

$$Mn = \frac{\mu_0 H_r^2}{\rho_0 v_r^2} = \frac{\mu_0 H_r^2 h^2}{\rho_0 \kappa^2}, Qn = \frac{Q_0 h^2}{\rho_s c_s \kappa_s \delta T}.$$
(9)

DIMENSIONLESS EQUATIONS

The dimensionless form of Navier-Stokes and thermal diffusion equations:

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + Ra Pr\left(T - \frac{T_0}{\delta T}\right)\mathbf{k} + Pr\nabla \cdot \mathbf{S} + Mn \,\mathbf{f}$$
(10)


$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla^2 T + \Pr \operatorname{Ec} \eta \Phi + \operatorname{Mn} \operatorname{Ec} T \frac{\partial (\chi_m \mathbf{H})}{\partial T} \cdot \left((\mathbf{v} \cdot \nabla) \mathbf{H} \right)$$
(11)

$$\mathbf{f} = \frac{1}{2} \chi_m (1 + \chi_m) \nabla H^2 + \chi_m \mathbf{H} ((\mathbf{H} \cdot \nabla) \chi_m) \chi_m = \chi_m (T(\mathbf{x})) = \frac{\chi_0}{1 + (\alpha \delta \Gamma) \left(T(\mathbf{x}) - \frac{T_0}{\delta \Gamma} \right)}$$
(12)

$$\frac{\partial T}{\partial t} = \frac{\kappa_s}{\kappa} \nabla^2 T + Q n Q_s \tag{13}$$

FORMULATION OF THE PROBLEM

The viscous, two-dimensional, incompressible and laminar ferromagnetic fluid flow is considered in this paper. Flow takes place in channel between two parallel flat plates. There are rectangular blocks (heat-generating devices) below the upper wall with a given volume heat source. The length of the channel is L and distance between plates is h. Below the channel the magnetic dipole is located at point (a,b).

The following boundary conditions for dimensionless variables are assumed:

- For <u>upper wall</u>: The velocity is 0 (no slip condition). Insulation condition for heat transfer by conduction (in solid domain) $\mathbf{n} \cdot \mathbf{q} = \mathbf{n} \cdot (-k_s \nabla T) = 0$ and for heat transfer by conduction and convection (in fluid domain) $\mathbf{n} \cdot \mathbf{q} = \mathbf{n} \cdot (-k_f \nabla T + \rho_f c_f T \mathbf{u}) = 0$ specifies where the domain is well insulated.
- For <u>lower wall</u>: The velocity is 0 (no slip condition). Insulation condition for heat transfer by conduction and convection (in fluid domain) $\mathbf{n} \cdot \mathbf{q} = \mathbf{n} \cdot (-k_f \nabla T + \rho_f c_f T \mathbf{u}) = 0$.
- For <u>inlet (left wall)</u>: The temperature is $\frac{T_l}{\delta T}$ where $\delta T = |T_u T_l|$. At the inlet boundary there is a <u>parabolic laminar flow profile</u> given by equation $u_{in} = -4 \frac{u_0}{u_r} y(y-1)$ for $y \in \langle 0, 1 \rangle$.
- For <u>outlet (right wall)</u>: The convective flux is assumed for temperature, $\mathbf{n} \cdot (-k_s \nabla T) = 0$. Pressure outlet is assumed, $(-p\mathbf{I} + \mathbf{S})\mathbf{n} = -p_0\mathbf{n}$, where p_0 is the dimensionless atmospheric pressure.

• For solid-fluid interface: The velocity is 0 (no slip condition). Continuity equation for heat transfer equation $\mathbf{n} \cdot (\mathbf{q}_s - \mathbf{q}_f) = 0$ where $\mathbf{q}_s = -k_s \nabla T$ and $\mathbf{q}_f = -k_f \nabla T + \rho_f c_f T \mathbf{u}$.

The following <u>initial conditions</u> for dimensionless variables are assumed: fluid is motionless (velocity is zero), pressure is zero and temperature is $\frac{T_l}{\delta T}$ for whole domain (with fluid and solid).

<u>Time-dependent flow</u> is considered for time $t \in \langle 0, 0.5 \rangle$. The problem is solved with finite element method COMSOL code using direct UMFPACK linear system solver. Relative and absolute tolerance used in calculations are 0.05 and 0.005, respectively.

Table 1. Fluid

Quantity	Variable	Unit	Value
Density	$ ho_{_0}$	$\left[\frac{kg}{m^3}\right]$	1180.0
Viscosity	$\eta_{_0}$	$\left[\frac{kg}{m \cdot s}\right]$	0.08
Thermal conductivity	k	$\left[\frac{J}{m \cdot s \cdot K}\right]$	0.06
Heat capacity	с	$\left[\frac{J}{kg\cdot K}\right]$	4200
Thermal diffusivity (diffusion coefficient)	$\kappa = \frac{k}{\rho_0 c}$	$\left[\frac{m^2}{s}\right]$	1.210654e-7
Thermal expansion coefficient	α	$\left[\frac{1}{K}\right]$	5.6e-3
Magnetic susceptibility	χ_0	-	6e-2

Table 2. Solid

Quantity	Variable	Unit	Value
Density	$ ho_s$	$\left[\frac{kg}{m^3}\right]$	8960
Thermal conductivity	k _s	$\left[\frac{J}{m\cdot s\cdot K}\right]$	401
Heat capacity	C _s	$\left[\frac{J}{kg\cdot K}\right]$	384
Thermal diffusivity (diffusion coefficient)	$\kappa_{s} = \frac{k_{s}}{\rho_{s}c_{s}}$	$\left[\frac{m^2}{s}\right]$	1.165481e-4
Heat source	Q	$\left[\frac{J}{s \cdot m^3}\right]$	8.0e+8

Table 3. Flow

Quantity	Variable	Unit	Value
Velocity	<i>u</i> ₀	[m/s]	5.0e-3
Characteristic velocity	V _r	[m/s]	1.210654e-7
Magnetic permeability of a vacuum	$\mu_0 = 4\pi \cdot 10^{-7}$	$\left[N/A^2\right]$	1.2566e-6
Difference of temperatures	δΓ	[K]	30
Temperature	T_0	[K]	300
Temp. of upper wall	$T_u = T_0 + \delta T$	[K]	330
Temp. of lower wall	$T_l = T_0$	[K]	300
High , length	$h_{,}L$	[<i>m</i>]	1e-3, 1e-2
Centre of magnetic wire	(a,b)	[<i>m</i>]	(2e-3, -3e-3)
Magnetic field strength at the source	γ	$[A \cdot m]$	10
Ratio of thermal diffusivities	$\kappa_{ratio} = \frac{\kappa_s}{\kappa}$	-	962.687174

Table . Flow 1

Quantity	Flow 1A	Flow 1B	Flow 1C	Flow 1D	
а	2	2	2	2	
b	-3	-2.5	-2	-1.5	
H_r	1.768388e+5	2.546479e+5	3.978874e5	7.073553e+5	
Pr		56	0		
Ra		200.7	'938		
Ec		1.16324e-13			
Re		0.001	786		
Mn	2.272182e+9	4.711597e+9	1.150292e+10	3.635492e+10	
Qn		64.01	9097		
V_{avg} (fluid)	292.980369	309.281869	331.905089	371.38104	
T_{avg} (fluid)	101.330192	101.314674	101.096441	100.801837	
T_{avg} (all)	118.521428	118.261882	117.760089	117.17941	

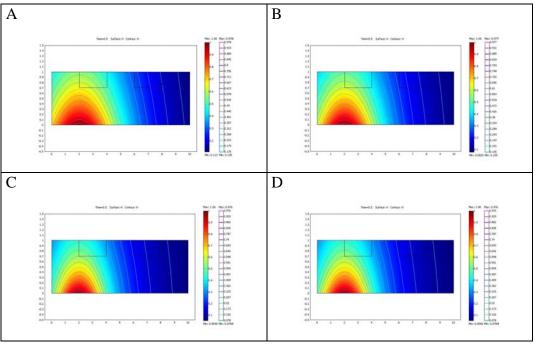


Figure 1.1. Intensity of magnetic field. Flow 1A, 1B, 1C, 1D

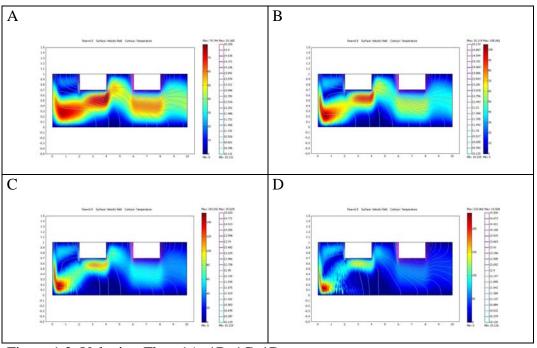


Figure 1.2. Velocity. Flow 1A, 1B, 1C, 1D.

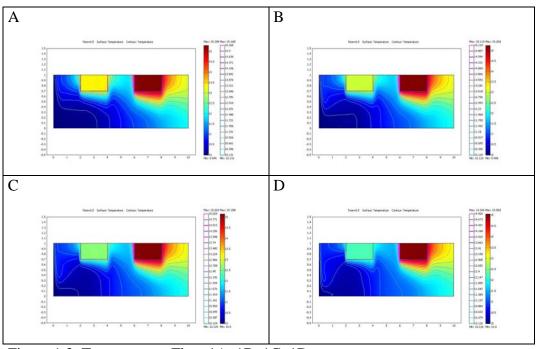


Figure 1.3. Temperature. Flow 1A, 1B, 1C, 1D.

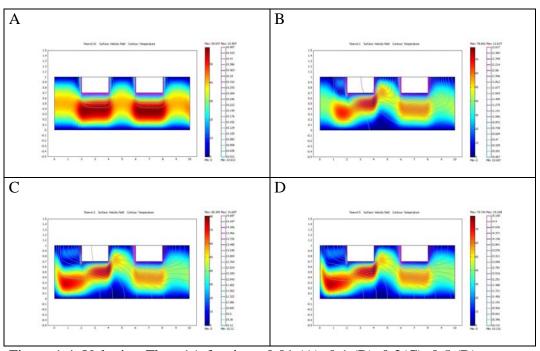


Figure 1.4. Velocity. Flow 1A for time=0.01 (A), 0.1 (B), 0.3(C). 0.5 (D).

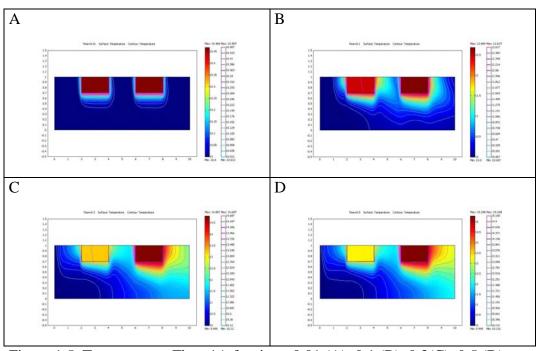


Figure 1.5. Temperature. Flow 1A for time=0.01 (A), 0.1 (B), 0.3(C). 0.5 (D).

Table . Flow 2

Quantity	Flow 2A	Flow 2B	Flow 2C	Flow 2D
а	4	4	4	4
b	-3	-2.5	-2	-1.5
H_r	1.768388e+5	2.546479e+5	3.978874e5	7.073553e+5
Pr		56	0	
Ra		200.7	'938	
Ec		1.1632	4e-13	
Re		0.001	786	
Mn	2.272182e+9	4.711597e+9	1.150292e+10	3.635492e+10
Qn		64.01	9097	
V_{avg} (fluid)	300.949913	331.078973	375.238349	445.972581
T_{avg} (fluid)	101.964051	102.076129	102.080147	101.443362
T_{avg} (all)	119.429217	119.129908	118.70548	117.611141

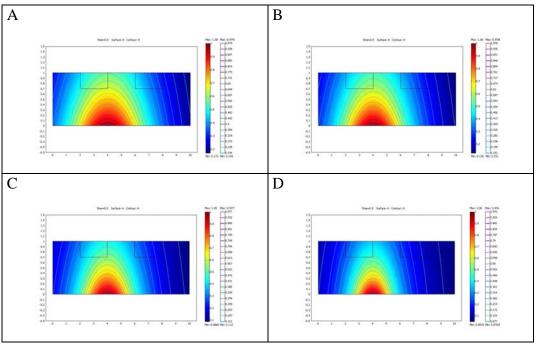


Figure 2.1. Intensity of magnetic field. Flow 2A, 2B, 2C, 2D

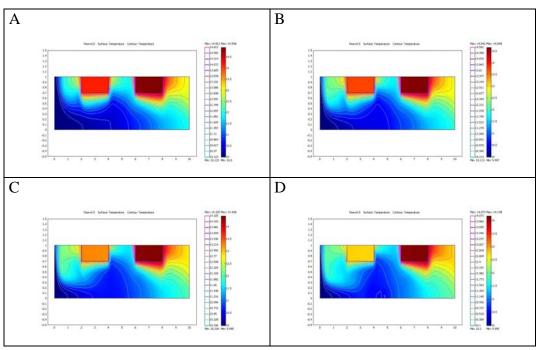


Figure 2.3. Temperature. Flow 2A, 2B, 2C, 2D.

Table . Flow 3

Quantity	Flow 3A	Flow 3B	Flow 3C	Flow 3D
a	4	4	4	4
b	-3	-2.5	-2	-1.5
H_r	1.768388e+5	2.546479e+5	3.978874e5	7.073553e+5
Pr		56	0	
Ra		200.7	938	
Ec		1.1632	4e-13	
Re		0.001	786	
Mn	2.272182e+9	4.711597e+9	1.150292e+10	3.635492e+10
Qn		64.019	9097	
V_{avg} (fluid)	293.987901 323.793528 364.54859 425.701388			
T_{avg} (fluid)	102.016613	102.391017	102.540234	101.932843
T_{avg} (all)	119.892233	119.877038	119.491615	118.356234

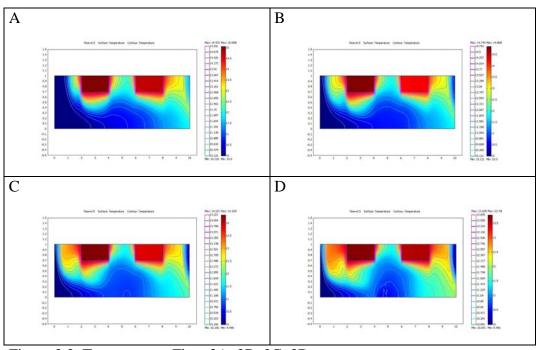


Figure 3.3. Temperature. Flow 3A, 3B, 3C, 3D.

Table . Flow 4

Quantity	Flow 4A	Flow 4B	Flow 4C	Flow 4D	
$\gamma \ [A \cdot m]$	10	8	5	2	
H_r	1.768388e+5	1.414711e+5	8.8419412e+4	3.5367765+4	
Pr		50	50		
Ra		200.	7938		
Ec		1.16324e-13			
Re		0.00	1786		
Mn	2.272182e+9	1.454197e+9	5.680456e+8	9.088773e+7	
Qn		64.019097			
V_{avg} (fluid)	292.980369 284.941996 278.417311 277.34216				
T_{avg} (fluid)	101.330192	101.518341	101.634182	101.525145	
T_{avg} (all)	118.521428	118.912839	119.279439	119.198103	

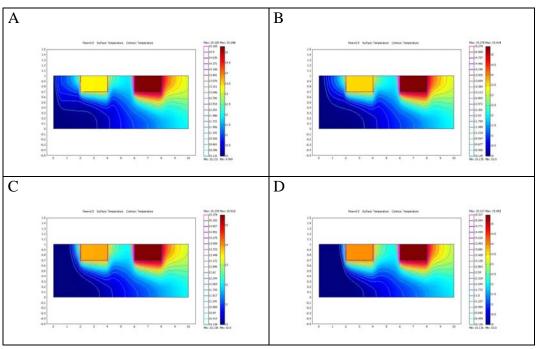


Figure 4.2. Temperature. Flow 4A, 4B, 4C, 4D.

Table . Flow 5

Quantity	Flow 5A	Flow 5B	Flow 5C	Flow 5D	
χ_0	0.5	0.1	0.06	0.04	
H_r		1.7683	388e+5		
Pr		50	60		
Ra		200.	7938		
Ec		1.1632	24e-13		
Re		0.001786			
Mn		2.272182e+9			
Qn		64.019097			
V_{avg} (fluid)	411.490459	306.564373	292.980369	284.589693	
T_{avg} (fluid)	100.741705	101.246393	101.330192	101.453763	
T_{avg} (all)	116.618815	118.171175	118.521428	118.846783	

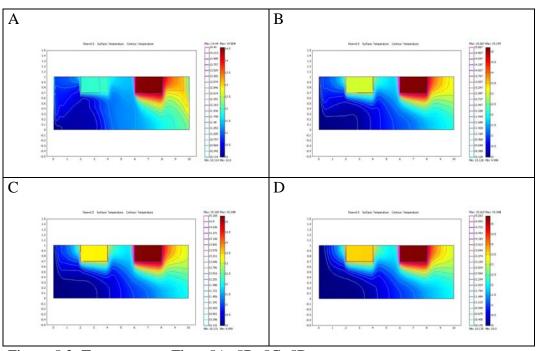


Figure 5.2. Temperature. Flow 5A, 5B, 5C, 5D.

Table . Flow 6

Quantity	Flow 6A	Flow 6B	Flow 6C	Flow 6D		
α [1/K]	1e-2	5e-3	1e-3	1e-4		
H_r		1.7683	388e+5			
Pr		50	50			
Ra	358.560405	179.280203	35.85604	3.585604		
Ec		1.16324e-13				
Re		0.00	1786			
Mn		2.2721	82e+9			
Qn		64.01	9097			
V_{avg} (fluid)	301.700686	291.26183	278.372856	277.394904		
T_{avg} (fluid)	101.321273	101.394785	101.594218	101.621808		
T_{avg} (all)	118.401486	118.626348	119.220403	119.311931		

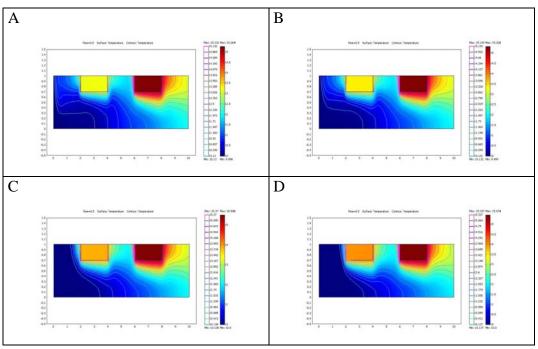


Figure 6.2. Temperature. Flow 6A, 6B, 6C, 6D.

Table . Flow 7

Quantity	Flow 7A	Flow 7B	Flow 7C	Flow 7D	
H_r		1.768388e+5			
Pr		5	60		
Ra		200.	7938		
Ec		1.1632	24e-13		
Re		0.001786			
Mn		2.2721	182e+9		
Qn	0.800239 4.001194 8.002387 40.01194				
V_{avg} (fluid)	277.384394 277.522085 277.876352 286.028446				
T_{avg} (fluid)	88.17116888.85300889.70239496.368224				
T_{avg} (all)	100.242442	101.208415	102.4098	111.69463	

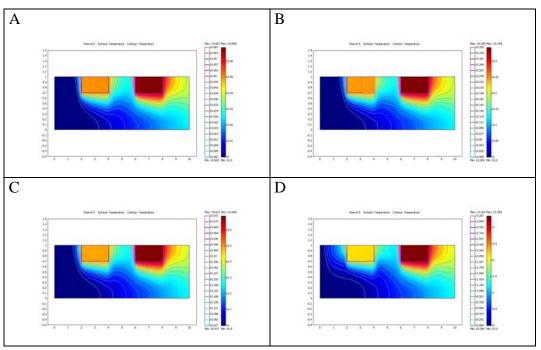


Figure 7.3. Temperature. Flow 7A, 7B, 7C, 7D.

CONCLUSIONS

- The flow was relatively uninfluenced by the magnetic field until its strength was large enough for the Kelvin body force to overcome the viscous force.
- It can be observed that the cooler ferrofluid flows in the direction of the magnetic field gradient and displaced hotter ferrofluid.
- This effect is similar to natural convection where cooler, more dense material flows towards the source of gravitational force.
- Ferrofluids have promising potential for the heat transfer applications because a ferrofluid flow can be controlled by using an external magnetic field.

References

- Andersson, H.I, Valnes, O.A., 1998. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mechanica, 128, 39-47.
- Berkovsky, B.M., Medvedev, V.F., Krakov M.S., 1993. Magnetic Fluids Engineering Applications, Oxford Science Publications, Oxford.
- Ganguly, R., Sen, S., Puri, I.K., 2004. Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. Journal of Magnetism and Magnetic Materials, 271, 63-73.
- Kovetz A., The Principles of Electromagnetic Theory, Cambridge University Press, 1990.
- Krakov, M.S., Nikiforov, I.V., 2002. To the influence of uniform magnetic field on thermomagnetic convection in square cavity. Journal of Magnetism and Magnetic Materials, 252, 209-211.
- Loukopoulos, V.C, Tzirtzilakis, E.E., 2004. Biomagnetic channel flow in spatially varying magnetic field. International Journal of Engineering Science, 42, 571-590.
- Matsuki, H., Yamasawa, K., Murakami, K., 1997. Experimental considerations on a new automatic cooling device using temperature sensitive magnetic fluid. IEEE Transactions on Magnetics, 13, 1143-1145.
- Ramanathan, A., Suresh, G., 2004. Effect of magnetic field dependent viscosity and anisotropy of porous medium on ferroconvection. International Journal of Engineering Science, 42, 411-425.
- Snyder, S.M., Cader, T., Finlayson, B.A., 2003. Finite element model of magnetoconvection of a ferrofluid. Journal of Magnetism and Magnetic Materials, 262, 269-279.
- Tynjälä, T., Hajiloo, A., Polashenski jr., W., Zamankhan, P., 2002. Magnetodissipation in ferrofluids. Journal
 of Magnetism and Magnetic Materials, 252, 123-125.
- Tzirtzilakis, E.E., Tanoudis, G.B., 2003. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. International Journal of Numerical Methods for Heat and Fluid Flow, 13 No.7, 830-848.
- Yamaguchi, H., Zhang, Z., Shuchi, S., Shimada, K., 2002. Heat transfer characteristic of magnetic fluid in a partitioned rectangular box. Journal of Magnetism and Magnetic Materials, 252, 203-205.
- Yang, L., Ren, J., Song, Y., Min, J., Gou, Z., 2004. Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field. International Journal of Engineering Science, 42, 491-507.