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Quantum Computation

Qubit —» Two level system obeying quantum mechanics 3
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¢ Quantum Computer — An array of several interacting qubits )
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Quantum mechanical laws allow qubits to represent & process exponentially more information than bits !
Information on 300 qubits — Number of particles in the entire universe !
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Silicon Quantum Computation — Modeling Parameters
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Computational Workflow for Designing Silicon Donor Qubits

Input : Device Geometry, Gate Voltages, Magnetic Fields, Material Model
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Quantum Toolbox in Python ‘

Output : Spin States, Coherence/Relaxation times, Quantum Gate Fidelity

T. S. Humble et. al, Nanotechnology, 27, 42 (2016)
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Test Device Model & Equations

Device to readout the spin of donor electron : 4 N
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Challenges at Low Temperature

Exponential dependence of densities with temperature
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Guidelines for Low Temperature Convergence

1. Approximate hole densities p = n?/n
Reduce Number of degrees of freedom to be solved for
[, on q q .

2. Use Finite Element Log Discretization
Solve for the Log of electron density which has smaller
spatial gradients than electron density )

eF = R . ==

3. Modify equations appropriately
Minimize divide-by-zero-errors
e.g8. mi = VN.Nyexp(—E,/2kgT)
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(4. Choose Appropriate Meshing )
High densities near gates & swept mesh across domains

it _J

(5. Use proper initial guesses for electron density)

Set appropriate scaling factors in the Jacobian Matrix

Lo Temperature = 300 K 10°
) 101 1018 2 102 m? _ 10
<]
E. 10° & 10
. T 10 m?  10Em? 10Mm3
10 . Temperature =15 K
k Iterations for Different Initial Electron Densities Iterations for Different Initial Electron Densities
102 R
15K 20K 50K 100K 200K 300K
10"f -
100 :
S
o) 10" ;
=
m 3
102
10-3f
10+ ’
105

Iterations for Different Temperatures

& OAaK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY




Device Electrostatics at 15 K

Conduction Band
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Device electrostatics (n, E, and F) from COMSOL can (a) simulate locations for spin-readout and (b) electric fields experienced by *'P electron qubits,

and is consistent with our understanding and other semiconductor packages.
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Comparison with Higher Temperatures

Conduction Band Energy

Electric Field
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Over 5 K, typical accuracies of conduction band energy is ~1 meV and electric field ~ 0.1 MV/m
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Summary

Input : Device Geometry, Gate Voltages, Magnetic Fields, Material Model

Electrostatic calculations are an integral part of a computational workflow woy a0 smers
needed to design silicon donor qubits for quantum computing. : @Mw
j;‘::_p“f"“ i #

Simulating electrostatics at low temperature poses convergence issues as several

parameters such as carrier densities scale exponentially at low temperature. N Ny, - —z
i
We have provided a guideline of simulating electrostatics at low temperatures e . |
and have achieved convergence down to 15 K for a test nanostructure. T s o Terorains rm—

The electrostatics at 15 K with COMSOL yield expected results for the position of

\
' Locations with
Py ~ optimal energy

charge reservoirs, donors, conduction band and electric fields. | Ok | - I
= - ‘J . A '(E;)
. T
We then compared the results at 15 K to higher temperatures to quantify the ,g oot 2 1S
accuracy of device electrostatics with temperature. ~ S Fou
F.A. Mohiyaddin et. al, COMSOL Conference 2017 (2017) I e EE
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