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 Silicon solar cell process 

Introduction 

Saw damage removal & Texture 

  Metallization  

Diffusion 

Rear & Front passivation 

Rear emitter removal & Surface cleaning 

Firing & Annealing    
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 Silicon solar cell process  

 Chemical process steps  

 Surface structuring 

 Reduction of reflection  

 Intended etch back 

 Modification of emitter 

sheet resistance  

 

Introduction 

Saw damage removal & Texture 

  Metallization  

Diffusion 

Rear & Front passivation 

Rear emitter removal & Surface cleaning 

Firing & Annealing    
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Saw damage removal & Texture 

Introduction 

 Silicon solar cell process  

 Chemical process steps  

 Surface structuring 

 Reduction of reflection  

 Texture process  

 KOH 80°C  

 Surface covered with 

small micropyramids  
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Saw damage removal & Texture 

  Metallization  

Diffusion 

Rear & Front passivation 

Rear emitter removal & Surface cleaning 

Firing & Annealing    

Introduction 

 Silicon solar cell process  

 Chemical process steps  

 Surface structuring 

 Reduction of reflection  

 Texture process  

 KOH 80°C  

 Surface covered with 

small micropyramids  

 Process steps in automated 

batch etching and cleaning 

tool  
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Motivation 

 Goal 

 Homogeneous texture on 

wafer surface   

 Deeper understanding of 

processes in the basin   

 Investigate flow-induced 

etching patterns  

 Optimizing basin or pipe 

geometry  
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Simulation Approach 

Components  Module  

Inlet pipe CFD 

Basin 

without fittings  
CFD 

Basin 

with perforated 

plate  

CFD 
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Simulation Approach 

Components  Module  

Inlet pipe CFD 

Basin 

without fittings  
CFD 

Basin 

with perforated 

plate  

CFD 

 COMSOL Multiphysics 5.21 on two AMD Opteron Processor 6128 with 8 

cores each, 2 GHz, 72 Gb Ram 
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 Simulation setup 

 Geometry: quarter of basin  

 Initial Material: 

Water, Comsol library  

 Study: Stationary 

 Pipe: κ-ε turbulence model 

 Basin: Algebraic yPlus  

Separation of Geometry 

Investigation Approach  
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 Separation to save computational time in later changes of geometry 

 Comparing two step study with one step study  

Separation of Geometry 

Investigation Approach  

Step 1 

Step 2 

Step 1 
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 Two Step and One step study results compared on work plane  

 

 

 

Separation of Geometry 

Results    

Study Two step One step 
Relative  

difference 

Velocity magnitude  

U (m/s) 
7.93·10-3 7.75·10-3 2% 

Velocity in z-direction  

uZ (m/s) 
1.98·10-3 1.84·10-3 7% 

Number  

Mesh Element  [N] 
8.7·104 3.0 ·105 3.9·105 

Time [min] 22 49 254 

Step 1 

Step 2 

Step 1 
Work plane 
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Results Two Step Study  

Simulation  

 Turbulence around  

supply pipes 

 One part flows through  

overflow collar 

 Other part flows along the 

wall   

Plane 
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Results Two Step Study  

Simulation  

 Turbulence around  

supply pipes 

 One part flows through  

overflow collar 

 Other part flows along the 

wall   

 Turquoise, area of less 

flow  

 Upper work plane to 

validate 

Plane 
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Results Two Step Study 

Validation 

 21 measuring points, 

based on simulation  

 Velocity profile along 

row 3  

 Ultrasonic flow 

sensor 

 Highly accurate 

point velocity 

 between -0.2 m/s 

and 2.4 m/s ± 1% 

 Resolution of 

0.001 m/s 

G 

 

F 

 

E 

D 

C 

 

B 

 

A 

uz Plane 

      x10-3 
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Results Two Step Study 

Validation 

 21 measuring points, 

based on simulation  

 Velocity profile along 

row 3  

 Ultrasonic flow 

sensor 

 Highly accurate 

point velocity 

 between -0.2 m/s 

and 2.4 m/s ± 1% 

 Resolution of 

0.001 m/s 

Sensor 

Support Rod 

Supply Pipe 

Heating coil 

Measuring Tape 
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Results Two Step Study 

Validation 

 21 measuring points, 

based on simulation  

 Velocity profile along 

row 3  

 Ultrasonic flow 

sensor 

 Highly accurate 

point velocity 

 between -0.2 m/s 

and 2.4 m/s ± 1% 

 Resolution of 

0.001 m/s 

Sensor 

Support Rod 

Supply Pipe 

Heating coil 

Measuring Tape 
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Measuring section  

Measuring point  

90° 
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Results Two Step Study 

Simulation and Experimental Results  
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Results Two Step Study 

Simulation and Experimental Results  
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Results Two Step Study 

Simulation and Experimental Results  

 Flow direction verified  

 Positive and negative velocities detected and measured  

 Symmetry in basin recognized  
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Results Two Step Study 

Simulation and Experimental Results  
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 Flow profile along basin confirmed  

 Maxima of curve fittings close to simulated maxima 
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Replacement of Perforated Plate  

Investigation Approach  

 Investigate perforated plate 

 Simulation setup 

 Initial Material: Water,  

Comsol library  

 Study: Transient 

 κ-ε turbulence model  

Perforated Plate            Screen Feature  

 Scale differences  

 Replacement by Screen Feature 

 Comsol Screen resistance K  

 Solidity σ=0.68 

 Refraction coefficients η= 0.8 
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Replacement of Perforated Plate  

Results  

Velocity 

magnitude  

Ubelow (m/s) 

Velocity 

magnitude  

Uabove (m/s) 

Pressure 

pbelow (Pa) 

Pressure 

pabove (Pa) 

Mesh 

Elements  [N] 

Perforated 

plate  
37.1 ·10-3 4.8 ·10-3 45.93 45.06 4.5·105 

Screen Feature 12.1·10-3 8.1 ·10-3 16.98 16.99 3.4 ·104 

Perforated Plate                    Screen Feature  
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Summary   

Components Simulation  Experimental Validation  

Inlet pipe 

Two step study  

√  
Step 1 Pipe  Step 2 Basin  

Basin 

without fittings  

One step study  

Pipe and basin together 

Basin  

with perforated 

plate  

Section of the Basin 

Perforated plate Screen Feature 
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Components  Module  

C
o
n
c
lu

d
e
d
 Inlet pipe CFD 

Basin 

without fittings  
CFD 

Basin 

with perforated plate  
CFD 

F
u
tu

re
  

Basin  

with carrier 
CFD 

Heater 
CFD,  

Heat Transfer 

Wafer   

CFD,  

Heat Transfer,  

Chemical Reaction Engineering 

Outlook  
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Thank you for your attention! 

Fraunhofer Institute for Solar Energy Systems ISE 

 

Lena Mohr 

 

www.ise.fraunhofer.de 

lena.mohr@ise.fraunhofer.de 
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Mesh Convergence Study  

Mesh 

 

DoF 

[N] 

Ū Pipe 

[m/s] 

Ū Outlets  

[m/s] 

Rough 1,5·105 0,5037 0,1238 

Normal  5,5·105 0,3608 0,1271 

Fine 2,4·106 0,3471 0,1299 

Rough Fine 

Ū
  [

m
/s

] 

Rough Normal Fine 

 Average velocity magnitude Outlets Ū 

• Average veloctiy magnitude Pipe Ū  
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 Perforated plate as interior wall 

 Flow changing according 

to given parameters  

 Screen Feature setup 

 𝐾 = 0.94((1 − 𝜎𝑆)−2 − 1)1.28   

 𝜂user defined = 0.8 

 𝐾 = Resistance 

  𝜎S = blocked area / total area 

 𝜂Wire gauze = refraction coefficient 

Perforated Plate            Screen Feature  

Replacement of Perforated Plate  

Investigation Approach  


