Fluid Dynamic Modeling Of An Industrial Wet Chemical Process Bath For The Production Of Silicon Solar Cells

L. Mohr¹, M. Zimmer¹, A. Moldovan¹, M. Menschick², B. Mandlmeier², C. Müller³

¹Fraunhofer ISE ²Singulus Technology AG ³Albert-Ludwigs-Universität, Freiburg

Comsol Conference

Rotterdam, October 19, 2017

www.ise.fraunhofer.de

Saw damage removal & Texture

Diffusion

Rear emitter removal & Surface cleaning

Rear & Front passivation

Metallization

Firing & Annealing

- Silicon solar cell process
- Chemical process steps
 - Surface structuring
 - Reduction of reflection
 - Intended etch back
 - Modification of emitter sheet resistance

Saw damage removal & Texture

Diffusion

Rear emitter removal & Surface cleaning

Rear & Front passivation

Metallization

Firing & Annealing

- Silicon solar cell process
- Chemical process steps
 - Surface structuring
 - Reduction of reflection
- Texture process
 - KOH 80°C
 - Surface covered with small micropyramids

Saw damage removal & Texture

- Silicon solar cell process
- Chemical process steps
 - Surface structuring
 - Reduction of reflection
- Texture process
 - KOH 80°C
 - Surface covered with small micropyramids
- Process steps in automated batch etching and cleaning tool

Saw damage removal & Texture

Motivation

Goal

- Homogeneous texture on wafer surface
- Deeper understanding of processes in the basin
- Investigate flow-induced etching patterns
- Optimizing basin or pipe geometry

Simulation Approach

Components	Module				
Inlet pipe	CFD				
Basin without fittings	CFD				
Basin with perforated plate	CFD				

Simulation Approach

Components	Module
Inlet pipe	CFD
Basin without fittings	CFD
Basin with perforated plate	CFD

Simulation Approach

Components	Module
Inlet pipe	CFD
Basin without fittings	CFD
Basin with perforated plate	CFD

COMSOL Multiphysics 5.21 on two AMD Opteron Processor 6128 with 8 cores each, 2 GHz, 72 Gb Ram

Separation of Geometry Investigation Approach

- Simulation setup
 - Geometry: quarter of basin
 - **Initial Material:** Water, Comsol library
 - Study: Stationary
 - Pipe: κ - ϵ turbulence model
 - Basin: Algebraic yPlus

Separation of Geometry Investigation Approach

Separation to save computational time in later changes of geometry

Comparing two step study with one step study

Separation of Geometry Results

Two Step and One step study results compared on work plane

Study	Two step		One step	Relative difference
Velocity magnitude U (m/s)	7.93·10 ⁻³		7.75·10 ⁻³	2%
Velocity in z-direction u _z (m/s)	1.98·10 ⁻³		1.84·10 ⁻³	7%
Number Mesh Element [N]	8.7·10 ⁴	3.0 ·10 ⁵	3.9·10⁵	
Time [min]	22 49		254	

Results Two Step Study Simulation

- Turbulence around supply pipes
- One part flows through overflow collar
- Other part flows along the wall

Results Two Step Study Simulation

- Turbulence around supply pipes
- One part flows through overflow collar
- Other part flows along the wall
- Turquoise, area of less flow
- Upper work plane to validate

Results Two Step Study Validation

- 21 measuring points, based on simulation
- Velocity profile along row 3
- Ultrasonic flow sensor
 - Highly accurate point velocity
 - between -0.2 m/s and 2.4 m/s ± 1%
 - Resolution of 0.001 m/s

Results Two Step Study Validation

- 21 measuring points, based on simulation
- Velocity profile along row 3
- Ultrasonic flow sensor
 - Highly accurate point velocity
 - between -0.2 m/s and 2.4 m/s ± 1%
 - Resolution of 0.001 m/s

Results Two Step Study Validation

- 21 measuring points, based on simulation
- Velocity profile along row 3
- Ultrasonic flow sensor
 - Highly accurate point velocity
 - between -0.2 m/s and 2.4 m/s ± 1%
 - Resolution of 0.001 m/s

Results Two Step Study Simulation and Experimental Results

Results Two Step Study Simulation and Experimental Results

Results Two Step Study

Simulation and Experimental Results

- Flow direction verified
- Positive and negative velocities detected and measured
- Symmetry in basin recognized

Results Two Step Study Simulation and Experimental Results

Results Two Step Study Simulation and Experimental Results

- Flow profile along basin confirmed
- Maxima of curve fittings close to simulated maxima

Replacement of Perforated Plate Investigation Approach

- Investigate perforated plate
- Simulation setup
 - Initial Material: Water, Comsol library
 - Study: Transient
 - κ-ε turbulence model

- Scale differences
- Replacement by Screen Feature
 - Comsol Screen resistance K
 - Solidity σ=0.68
 - Refraction coefficients $\eta = 0.8$

Replacement of Perforated Plate Results

Summary

Components	Simula	tion	Experimental Validation		
Inlat pipe	Two step study				
miet pipe	Step 1 Pipe	Step 2 Basin	2	En sup 10 m 10	
Basin without fittings	One step	study	N		
	Pipe and basi	in together			
Basin with perforated plate	Section of the Basin				
	Perforated plate	Screen Feature			

Outlook

	Components	Module	
Concluded	Inlet pipe	CFD	a de la de l
	Basin without fittings	CFD	
	Basin with perforated plate	CFD	Contraction of the second seco
Future	Basin with carrier	CFD	
	Heater	CFD, Heat Transfer	
	Wafer	CFD, Heat Transfer, Chemical Reaction Engineering	

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Lena Mohr

www.ise.fraunhofer.de lena.mohr@ise.fraunhofer.de

Mesh Convergence Study

Rough				Fine					
X.L.X			y jx						
Mesh	DoF [N]	Ū Pipe [m/s]	Ū Outlets [m/s]	0,50 0,45 0,40	- - - -	•	I		-
Rough	1,5·10 ⁵	0,5037	0,1238	ග (ග ළ 0,30	- \$		•	•	•
Normal	5,5·10 ⁵	0,3608	0,1271	י <u>ה</u> 0,13	_		•	•	
Fine	2,4·10 ⁶	0,3471	0,1299	0,10	-	 Av Av 	erage velocity magnitude Outlets Ū erage veloctiy magnitude Pipe Ū -		
					F	Rough	Normal	Fine	

Replacement of Perforated Plate Investigation Approach

- Perforated plate as interior wall
 - Flow changing according to given parameters
- Screen Feature setup
 - $K = 0.94((1 \sigma_S)^{-2} 1)^{1.28}$
 - $\eta_{\text{user defined}} = 0.8$
 - K = Resistance
 - $\sigma_{\rm S}$ = blocked area / total area
 - $\eta_{\text{Wire gauze}}$ = refraction coefficient

