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Introduction

Dedicated work in modeling, simulation and design optimization of
Lithium-ion Battery (LIBs) was done in the past decades, and still, the most
widely used one for electrochemical processes is the Newman model.l"]
The underlying parameters are treated deterministically, but the impact of
uncertainty due to experimental accuracy limitations and cell-to-cell
variations have an significant impact on battery performance.!?]

In this approach the analysis of uncertainty related to heat generation is
the major focus due to its impact on safety and battery performance at a
systems level.

At DLR VE a P2D-3D electrochemical-thermal battery model is
established!3land used in order to simulate the deterministic behaviour of
a virtually represented commercial lithium-ion pouch battery cell.
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Fig. 1: Classification of methods and quantities for the battery model analysis

Uncertainty Assessment of Battery Parameters

Uncertainties and inhomogeneities of the electrochemical submodel are
mainly hidden within the electrochemical parameters and geometric
interface relations of the cell materials.
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an InLens electron detector with an accelarator voltage of 20 kV was used.
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Fig. 3: p-CT 2D particle volume analysis of a) the positive NMC with porous electrode
thickness Ly,s = 42,10 + 0,95 [um] and b) the negative graphite electrode with

porous electrode thickness Ly., =59,47 +1.05[um] to determine the particle
radius distribution.
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Deterministic: Battery Model
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Fig. 4: a) Simulated cell performance profiles of CV-charge, rest phase
and CP-discharge-cycle as a function of normalized time
b) Simulated quantities of interest: Mean total heat generation density,
mean battery temperature and state of charge as a function of normalized time
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Fig. 5: a) Simulated partial and total heat generation density
as a function of cell thickness at time t; during charge-phase
b) Simulated partial and total heat generation density
as a function of cell thickness at time t, during discharge-phase

Stochastic: Sensitivity Analysis

The measure of sensitivityl¥ of the model response Y ={Yq4,...,¥Y3}
to each input variable X = {X;, ..., X4} is given by the standard regression
coefficients (SRC); B least-squares coeffcients, M =4, A =[Xq,...,X4]
parameter matrix, B least-squares coefficients estimator, yeyY ,
o; standard deviation of the input sample X; and oy being total standard
deviation of Y:
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Fig. 6: SRC Index as a bar chart of input parameter selection: negative porous electrode
particle radius rp,.4, positive porous electrode particle radius rp,,s, negative porous

electrode thickness L., and positive porous electrode thickness L,

Conclusion

Uncertainty of material parameters of a LIB cell model has a big influence
on the battery performance. Therefore, a new test setup was developed
to propose uncertainty distribution of input parameters, predict the
impact of uncertainty for battery performance and derive accurate
behaviour of the quantities of interest: heat generation, mean discharge
energy and mean battery temperature. We will further utilize the model
for comparative studies of commercial cell variants.
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