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Abstract: The paper presents and compares two 

models for simulating magneto-hydrodynamic 

flow of RedOx electrolyte in a conduit patterned 

with circular pillars. The first model solves the 

coupled Nernst-Planck and Navier-Stokes 

equations subjected to Butler-Volmer electrode 

kinetics and provides detailed information on 

ions’ concentrations. The second model treats the 

electrolyte as a conductor, and uses current and 

momentum conservations. Both models are 

verified and their predictions are compared. 

Furthermore, we demonstrate the existence of an 

optimal pillar diameter that maximizes the 

electric current’s density. The work is relevant to 

microfluidic systems that utilize magneto-

hydrodynamics to move and stir fluids without a 

need for mechanical pumps and valves and, in 

particular, to chromatographic columns with 

infinite length. 
 

Keywords: Magneto-hydrodynamics, ion 

transfer kinetics, flow around a cylinder, porous 
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1. Introduction 
 

In recent years, there has been a growing 

interest in the interaction between ionic currents 

in electrolyte solutions and magnetic fields. The 

electric currents transmitted in an electrolyte 

solution interact with the magnetic field to form 

Lorentz body forces that, in turn, drive fluid 

motion. The phenomenon is commonly referred 

to as magneto-hydrodynamics (MHD) and has 

been utilized to drive and control flows in 

microfluidic conduits [1] and networks [2] 

without mechanical pumps and valves, to stir and 

mix fluids [3], and to enhance mass transfer next 

to electrodes’ surfaces [4,5,6]. Most of the 

literature pertaining to MHD focuses on liquid 

metals and ionized gases. The modeling of MHD 

flow of electrolytes is often more complex than 

that of liquid metals since the local electric 

conductivity is a function of the electrolytes’ 

concentration, which depends on the flow field.  

Nernst-Plank equations for the ions’ flux (NP) 

[7], the Navier-Stokes momentum equation (NS) 

[8], and Maxwell’s equations for the magnetic 

field need to be solved concurrently. 

Additionally, one often needs to consider non-

linear electrode kinetics. Fortunately, for 

electrolytes with low magnetic permittivity and a 

low magnetic Reynolds number, the 

determination of the magnetic field can be 

decoupled from that of the ion concentration, 

fluid flow, and electric fields. 

This paper focuses on a heterogeneous 

chemical reactor for chromatographic separation 

([9, 10]), with a MHD drive. To this end, we 

consider MHD-driven flow of a RedOx 

electrolyte in a conduit patterned with a periodic 

array of pillars (Fig. 1). The pillars provide 

increased surface area for catalytic reactions. A 

pair of electrodes is deposited along the 

opposing conduit’s walls. By imposing an 

electric potential difference across the electrodes, 

electric current is transmitted in the electrolyte 

solution. This current interacts with the magnetic 

field to induce fluid motion. The detailed ion 

distributions and the flow field are computed 

numerically by solving the coupled NP and NS 

equations. A one-dimensional, semi-analytical, 

implicit solution of the current-voltage relation 

for a RedOx electrolyte is constructed to validate 

the numerical, finite elements solutions. Based 

on the quasi-analytic solution, a simplified 

conductivity model is derived that allows 

computation of the flow drag coefficient in the 

conduit without calculating detailed ion 

distributions. We also use porous-media based 

methodology to model the flow. In the future, the 

model will be extended to include heterogeneous 

reactions at the pillars’ surfaces. 
 

 
Figure 1: A schematic depiction of a segment of the 

conduit patterned with a pillar array. 
 

2. Theory 
 

Consider an electrolyte solution subjected to 

electric and magnetic fields. The concentration 
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of the i -th species 
ic  is governed by the NP 

equation:  
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∂

�
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where the mass flux of species i ,  

i i i i i i iN uc D c z Fcν φ= − ∇ − ∇
� �

, (2) 

consists of convective, diffusive, and electro-

migrative terms. In the above, u
�

 is the fluid 

velocity. iD  and /( )i iD RTν =  are, respectively, 

the diffusivity and the mobility of the i -th 

species. iz  is the valance of the i -th ion. R  is 

the gas constant. T  is the absolute temperature. 

l  is the total number of ion species. F  is the 

Faraday constant. φ  is the electric potential. 

The electric potential satisfies the Poisson 

equation: 

( )
1

N

s i i
k

F z cε φ
=

−∇ ⋅ ∇ = ∑ , (3) 

where sε  is the dielectric permittivity of the 

solvent. We neglect gravity effects. The current 

flux equals the sum of the ions’ net charge flow: 

1

n

i i
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j F z N
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The momentum equation is: 
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where the electromagnetic body force 

EM L B Ef f f f∇= + +
� � � �

. (6) 

In the above, the Lorentz force 

Lf j b= ×
� ��

; (7) 

the magnetophoretic force 

( ) 2

02

mm
B if c b

χ

ς
∇ = ∇
� �

; (8) 

the electrophoretic force 

E i if F z cφ= ∇ ⋅∑
�

; (9) 

ρ  and µ  are, respectively, the fluid density and 

viscosity; b
�

 is the magnetic field vector; 0ς  is 

the magnetic permeability of the vacuum; p  is 

the dynamic pressure; mχ  is the molar 

susceptibility; and the subscript m  denotes 

paramagnetic ions. 

For reversible reactions at the electrodes’ 

surfaces: Ox ne Red
−

+ ⇔ , the species’ fluxes 

are given by the Butler-Volmer (BV) equation 

[1]: 
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where α  is the charge transfer coefficient for 

the cathodic reaction, n  is the number of 

electrons exchanged in the reaction, 0j  is the 

exchange current’s density, extVη φ= −  is the 

overpotential, Oxc  and Redc  are, respectively, 

the concentrations of the oxidized and reduced 

species at the electrodes' surfaces, and subscript 

b  refers to the bulk of the solution. When 

multiple reactions take place at the electrodes' 

surfaces, a separate BV equation is needed for 

each reacting pair. Solid surfaces, other than 

electrodes, are impermeable. The boundary 

conditions (BC) associated with the momentum 

equation consist of no slip at all solid surfaces 

and zero normal stress at the inlet and outlet. 

When calculating the flow around the pillar array, 

we carry out the computations on a unit cell with 

periodic BCs. 

Typically, in a homogeneous solution, net 

charge exists only in narrow regions next to solid 

surfaces (electric double layers, EDL) and the 

bulk of the solution is electrically neutral (EN): 

0i iz c =∑ , (11) 

which leads to zero net total convective flux. The 

electrophoretic force (equation 9) also vanishes. 

The current’s density when the concentration 

gradients in the bulk are small is: 

( )2 2
i i ij F z cν φ= − ∇∑

�
. (12) 

The electric current for weakly conducting 

electrolyte’s (when induction is negligible) is: 

j σ φ= − ∇
�

. (13) 

The ionic conductivity of the electrolyte solution 

is: 
2 2

ionic i i iF z cσ υ= ∑ . (14) 

Based on a one-dimensional setting, we 

define the effective conductivity 

/eff jHσ φ= − ∆ , (15) 

where H  is the distance between the two 

electrodes, φ∆  is the potential drop in the 

solution’s bulk (excluding the two EDLs next to 

the electrodes’ surfaces), and j is the current’s 

density. 

Often, based on the Poission (3) and the EN 

condition (11), researchers conclude 2 0φ∇ = . 
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This is, however, incorrect. Instead, current 

conservation 0j∇ ⋅ =
�

dictates 

( ) 0σ φ∇ ⋅ ∇ = . (16) 

In general, σ is a function of the concentrations 

and, therefore, depends on space coordinates and 

time. Equation (16) reduces to the Laplace 

equation only when the species’ concentrations 

are uniform.  

Electrical neutrality exists in the bulk of the 

solution, but not next to solid surfaces. Typically 

a surface in contact with aqueous solution 

acquires net charge, which attracts counterions to 

form a thin (a few nanometers in thickness) 

counterion layer (EDL). When the electric field 

is tangent to the surface, the electrostatic force 

propels the EDL’s ions, which gives rise to 

electro-osmotic flow. When the device’s length 

scale is much greater than the thickness of the 

EDL, the flow in the EDL can be approximated 

by the Smoluchowski slip velocity [11]: 

// 0 // /ru Eε ε ζ µ= − , (17) 

where ζ  is the difference in potential across the 

EDL. The subscript // denotes the vector 

component tangent to the solid/liquid interface.  

EDLs also exist at the surfaces of the electrodes. 

We include the effect of the EDLs next to the 

electrodes in the formulation of the Butler-

Volmer equations. 
 

3. Code Verification 
 

To verify the code, we reproduced known 

results for the drag force associated with a pillar 

placed mid-distance between two parallel plates 

and computed the ion distributions in a one-

dimensional setting.  
 

3.1 Verification of Flow Simulations 

The computational domain spans / 2x W= ±  

and / 2y H= ± . A cylinder of diameter d is 

centered at the coordinate’s origin ( , ) (0,0)x y = . 

The flow enters the cell with a parabolic velocity 

profile of maximum velocity 0u  and exits with 

zero normal stress. The total drag includes both 

viscous and pressure drag: 

{

}2 ( )

drag p x

S

x x y y x

F F F n p

n u n u v dS

µ

µ

= + = − +

 + + 

∫�
. (18) 

Fig. 2 depicts drag coefficient 0 0/( )dragF uλ µ=  

as a function of ( )1 /k kε = − , where /k d H= . 

The hollow squares, dotted line, solid line, dots, 

and dashed line correspond, respectively to our 

numerical results, Harrison’s approximation for 

0.4k <  [12], Faxen’s formula for 0.5k <  [13], 

Ben Richou’s numerical results, and the 

theoretical approximation when 1k → [14]. 

Witness the excellent agreement between our 

finite elements simulation results and literature 

data. 

 

Figure 2:  The cylinder’s drag coefficient 0λ  as a 

function of ε . Our finite element simulations (hollow 

squares); data from [12] (dotted line); data from [13] 

(solid line); numerical data from [14] (dots); 

lubrication approximation [14] (dashed line ). 
 

3.2 1-D Ion Transport in a DC Field 

Consider a RedOx electrolyte consisting of 

three species 31 2, ,
zz z

A B C
−+ +  (e.g., 3 2, ,Fe Fe

+ +  

and Cl− ) confined between two parallel 

electrodes placed distance H  apart and 

subjected to potential difference 0V . The steady 

state, dimensionless equations (1), (2) and (4) 

reduce to  

1
1 1

1 2

2 1
2 2

2 1 2

3
3 3 0

dC d J
z C

dY dY z z
dC Dd J

z C
dY dY D z z
dC d

z C
dY dY

Φ
+ = −

−
Φ

+ = ⋅
−

Φ
− =

. (19) 

In the above, the capital letters denote 

dimensionless quantities; , ,iy c φ  and j are, 

respectively, scaled with H , 3c , /RT F , and 

1 3 /D Fc H . 3c  is the average of 3c  and 

1 3c gc= . When 1 23, 2z z= = , 3 1z = , and 

1 2/ 3 / 4D D = ,  one obtains [15] 

( )( )1 2 1 23 2C C C C m+ + = , (20) 
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where m  is an integration constant. For any g , 

one can obtain m  as a function of J  using mass 

conservation. When 0J = , (1 ) / 2m g= − . It 

turns out that m  is nearly independent of J . 

Using the Butler-Volmer BCs (10), one obtains 

an implicit relation of the current as a function of 

the electrodes’ potential difference [16] (Fig. 3). 

The hollow circles, crosses and solid line 

correspond, respectively, to an exact solution 

(which does not assume fixed m ), an analytic 

solution that assumes (1 ) / 2m g= − , and a finite 

element solution of the NP equations. Witness 

the excellent agreement between the finite 

elements results and the analytic solutions. 

 
Figure 3: Dimensionless current as a function of the 

electrodes’ potential difference when using exact m  

values (circles), the approximation ~ (1 ) / 2m g−  

(crosses), and finite elements (solid line).  

0.5α = . 0.2g = . 0 0.001J = . 
 

 
Figure 4: MHD flow around a row of circular pillars 

confined in a conduit (only one unit cell is shown). 

The colors describe the concentration distribution of 

one of the reactive species 1c . The arrows depict the 

velocity vectors, and the lines are equi-potential lines. 
 

4. MHD Flow in a Conduit Patterned with 

Pillars 
 

4.1 Mass and Momentum Transport 

When pillars are present in the conduit, the 

convective terms in the NP equation do not 

vanish, and one needs to solve the coupled NP 

and NS equations. 

First, we study 2-D MHD flow in the 

presence of a single row of pillars. Fig. 4 depicts 

a representative computational cell of height 

1H mm= , width  1W mm= , pillar’s diameter 

0.11d mm= , and  periodic BCs at / 2x W= ± . 

(0.2,0.2,1)ic M= ; 0.5α = ; 6 2
0 10 /j A m

−= ;  

0.4B T= ; 0 25 /V RT F= ;  (3, 2, 1)iz = − ; and 

9 2(1,4 / 3,1) 10 /iD m s
−= × . The figure also 

shows the flow field (vectors), the equipotential 

contours (lines) and the concentration of one of 

the species 1c  (color) when the solid volume 

fraction 2 / 4 0.01s d HWπ= = . 

 
Figure 5: The average current density as a function of 

the applied dimensionless potential difference V  

when s = 0, 0.001, 0.01, 0.02, 0.05, 0.1, 0.4 and 0.5. 
 

Fig. 5 depicts the average current density at 

the electrode’s surface as a function of the 

dimensionless applied potential ( 0 /V V F RT= ) 

for various solid fractions ( s ). As V  increases, 

the current initially increases and eventually 

reaches an asymptotic, limiting value ( limJ ).  

Interestingly, when V and the average 

concentrations are held fixed, as s  increases 

from zero, limJ  initially increases, attains a 

maximum at ~ 0.1s , and then decreases. The 

pillar diameter at which the current peaks 

depends on the potential difference across the 

electrodes.  

Although the pillar blocks some of the cross-

sectional area available to current flow and 

reduces the total number of ions in the conduit, 

the pillar’s presence leads to a vertical velocity 

component and a stiffer x -velocity gradient next 



5 

to the electrode than would have existed in the 

absence of the pillar. These competing 

mechanisms modify the concentration field 

which leads to enhanced current at small s  and 

decreased current at large s . When s  is fixed, in 

the range of parameters studies, the flow rate is 

linearly proportional to the total current and 

nearly linearly proportional to the total 

concentration. 
 

4.2 Ohmic Model 
Using the 1-D NP simulations and equation 

(15), we obtain the effective electric conductivity. 
1 18.98eff mσ − −= Ω  and 2.64mVφ∆ =  when 

25V = . These conductivity and potential 

difference values are used in all the following 

ohmic model simulation unless otherwise 

specified. 

 
Figure 6: The viscous µλ  (solid line) and total λ  

(dashed line) drag coefficient as functions of s . The 

lines (f), squares/circles (c) and crosses (p) 

correspond, respectively, to the predictions of the NP, 

ohmic, and equivalent pressure driven flow models. 
 

We computed the 2-D, MHD flow with the 

same setup as that in section 4.1 by solving (16) 

with the NS equation. Fig. 6 compares the results 

of the NP and ohmic models. The figure depicts 

the viscous drag coefficient /F uµ µλ µ=  and 

the total drag coefficient /dragF uλ µ= , where 

u  is the average velocity in the domain. Witness 

the excellent agreement between both models’ 

predictions. The ohmic model requires much less 

computational effort than the NP-NS model. The 

predictions of both models compare well with 

the drag coefficients computed for pressure-

driven flows. 
 

4.3 Multiple Rows of Cylinders 
Next, we consider MHD flow in a pillar 

array with e  pillars in each column. The 

computational domain is sized 1H W mm= = . 

The unit cell consists of a single column of 

pillars and periodic BCs at / 2x W= ± . The 

vertical distance between adjacent pillars’ 

centers is /h H e= . The distances between the 

top/bottom pillars’ centers and the electrodes are 

/ 2h . We wish to examine the feasibility of 

obtaining an approximate drag coefficient using 

a computational cell that consists of a single 

pillar, symmetry conditions for the velocity field 

at / 2y h= ± , and a potential difference / eφ∆  

across the cell. The computations utilize the 

ohmic model. 

 
Figure 7: The total drag coefficient mλ  of a pillar as 

a function of the number of pillars in the column ( e ).  

At a particular e  value, from top to bottom, the 

hollow symbols are the drag coefficients for pillars 

located at 0, ,..., ( 1) / 2y h e h= ± ± − . The solid 

diamonds correspond to mλ  calculated with a unit cell 

consisting of a single pillar. 
 

Fig. 7 depicts the total drag coefficient 

max/m dragF uλ µ=  of a pillar centered at 

0, ,..., ( 1) / 2y h e h= −  as a function of the 

number of pillars (e) in the column when 3e =  

(triangles), 5  (circles) and 7  (squares), where 

maxu  is the maximum velocity within the cell. 

When 7e = , the drag coefficients 6.3, 6.1, 5.6, 

and 3.7 correspond, respectively, to pillars 

centered at 0, , 2y h h= ± ±  and 3h± . The solid 

diamonds correspond to the drag coefficient 

calculated using a unit cell with a single pillar. 

Fig. 7 shows that, the closer the pillars are to the 

conduit’s wall, the lower the drag coefficient.  

This behavior is due to the drag coefficient being 

normalized with the maximum velocity in the 

conduit. When there are many pillars in a column, 
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the pillars away from the wall experience nearly 

the same drag coefficient, e.g., when e = 7 , the 

pillars at position 0y =  and h± have drag 

coefficients that differ by less than 3% . Thus, 

when the column consists of a large number of 

pillars, one can estimate the drag coefficient of 

most pillars using a computational cell with a 

single pillar. 
 

4.4 Pillar Array 
Next, we consider a conduit populated by 

many pillars arranged in a square pattern.  We 

use a computational cell sized 1H W mm= =  

and consist of a single pillar (section 4.3). 

 
Figure 8: The total drag coefficient λ  as a function 

of s . Finite elements (solid line), asymptotic results 

for pressure driven flow at small (circles) and large 

(squares) s  [17]; and numerical results for pressure 

driven flow (stars) [17]. 
 

Fig. 8 depicts the drag coefficient λ  as a 

function of s . We compare the drag coefficient 

of the MHD flow with the drag coefficient of 

pressure driven flow [17] and obtain excellent 

agreement. Comparisons of the MHD viscous 

drag with the pressure-driven drag for other array 

patterns (not shown here) yielded similar results.  
 

4.5 MHD Flow in Porous Media 
Finally, we examine the feasibility of using a 

porous-media framework to simulate the MHD 

flow in the pillar array. Creeping flow in a 

porous medium is often modeled with the Darcy-

Brinkman’s (DB) equation: 

( ) 0

0

T

L

p

u u u f p

u

γ µ

ε κ

     ∇ ⋅ ∇ + ∇ + + + ∇ =         
∇ ⋅ =

�� � �

�

. (21) 

In the above, 1p sε = −  is the porosity, Lf
�

is the 

Lorentz body force, and κ  ( 2
m ) is the porous 

medium’s permeability. To use equation (21), we 

need an estimate for the permeability and a 

model for the electric current distribution. 

Models for the permeability of various cylinder 

patterns are available in the literature (i.e., 

Bruschke [18]). An appropriate model for the 

electric current is still lacking.  

To test the utility of equation (21), we 

computed the permeability and electric current 

using a single cell model, with cell size 

0.2H W mm= = , cylinder size 0.1d mm= , 

0.264mVφ∆ = . When 0.8pε = , we obtain 

-10 27.96 10 mκ = ×  and 33.19 /Lf N m= . We used 

these permeability and body force values for the 

DB simulation. Then, we solved the MHD 

equations using a unit cell sized 2H mm= , 

0.2W mm=  and consist of a column of 10 

pillars. 2.64mVφ∆ = . Fig. 9 depicts the axial 

velocity profile ( )u y  at the cell’s inlet/outlet as 

predicted by the MHD ohmic model (dashed line) 

and the DB model (solid line). The cell-averaged 

velocities are in excellent agreement with the DB 

model’s predictions. To obtain average quantities, 

one can significantly reduce the computational 

effort by using the porous medium model. 
 

 
Figure 9: The axial velocity distribution predicted by 

the MHD ohmic model (dashed line) and the DB 

model (solid line) for a square pillar array with 10 

pillars in each column. 
 

4.6 Slip Flow Effect 
Thus far, we have neglected the slip velocity 

at the surface of the pillars (17). When 0.4B T= , 
1 18.98eff mσ − −= Ω , 50mVζ = , 80.1rε = , 

12
0 8.85 10ε −= ×  and 1H mm= , the MHD flow 

is on the order of 1 /mm s  and the slip velocity is 

on the order of 0.1µm/s. In other words, the slip 

velocity is four orders of magnitude smaller than 

the MHD velocity and can be neglected. Only 

when the cell size H  decreases to tens of 
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microns, will the slip velocity cause a noticeable 

change in the velocity field.  
 

5. Conclusions 
MHD flow in a conduit patterned with a 

pillar array was solved using the Nernst-Planck 

(NP) and Navier-Stokes (NS) equations to obtain 

the concentrations and the electrical and the 

velocity fields.  The viscous drag coefficient of 

the MHD flow is in excellent agreement with the 

drag coefficients predicted for pressure-driven 

flow around single and multiple pillars.    

The NP-NS coupled model is, however, 

computationally demanding. When one defines 

an appropriate effective electric conductivity of 

the medium, the NP equations can be replaced 

with a simpler, ohmic model, which requires 

much less computational resources than the NP-

NS model. The computational demands can be 

further reduced by viewing the pillar array as a 

porous medium and using the Darcy-Brinkman 

equations to determine average (macroscopic) 

properties. The paper also examines when the 

flow in the pillar array can be simulated using 

computational unit cells with periodic boundary 

conditions.  

 Interestingly and counter-intuitively, we find 

that the presence of pillars in the conduit does 

not necessarily reduce the current transmitted 

between the electrodes, which form the conduit’s 

walls. Indeed, small pillars enhance current 

transmission. We attribute this phenomenon to 

the modification in the velocity field caused by 

the pillars, which, in turn, causes modifications 

in the concentrations’ distributions.  
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