
COMSOL Multiphysics for Efficient Solution of a Transient

Reaction-Diffusion System with Fast Reaction

Matthias K. Gobbert, Aaron Churchill, Guan Wang, and Thomas I. Seidman

Department of Mathematics and Statistics, University of Maryland, Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250, gobbert@math.umbc.edu

Abstract: A reaction between chemical species
is modeled by a particular reaction pathway, in
which one reaction is very fast relative to the other
one. The diffusion controlled reactions of these
species together with a reaction intermediate are
described by a system of three transient reaction-
diffusion equations over a two-dimensional spatial
domain. In the asymptotic limit of the reaction pa-
rameter tending to infinity, an equivalent two com-
ponent model can be used in numerical simulations
that is significantly more computationally efficient.
But this model has features such as an unusual cou-
pling of the two components in a boundary condi-
tion that bring out important advantages of COM-
SOL Multiphysics. We discuss the use of COM-
SOL and present representative simulation results
starting with an initial condition with interesting
structure throughout the domain.

Key words: Reaction-diffusion equation, Inter-
nal layer, Transient layer, Initial transient.

1 Introduction

Our objective is to study the evolution of the chem-
ical reactions involving the two reactive species A
and B, the reaction intermediate C, and a product
(not tracked) modeled by the reaction pathway

A + B λ−→ C, A + C
µ−→ (∗)

subject to diffusion in the two-dimensional domain
Ω := (0, 1) × (0, 1) ⊂ R2. In the reaction model,
λ and µ are reaction coefficients scaled such that
λ � µ = 1, which makes the first reaction a fast
reaction relative to the second one. We denote
the concentrations of the three chemically reactive
species A, B, C by u(x, y, t), v(x, y, t), w(x, y, t),

respectively. Standard chemical kinetics then give
a system of three transient reaction-diffusion equa-
tions for these concentrations as

ut = uxx + uyy − λuv − uw
vt = vxx + vyy − λuv
wt = wxx + wyy + λuv − uw

(1.1)

for (x, y) ∈ Ω and 0 < t ≤ tfin with boundary
conditions

u = α
vx = 0
wx = 0

 at x = 0,
ux = 0
v = β
wx = 0

 at x = 1

(1.2)

on the left and the right side of Ω, respectively, and

uy = 0
vy = 0
wy = 0

 at y = 0 and y = 1 (1.3)

on the top and the bottom of Ω, and the initial
conditions

u = uini(x, y)
v = vini(x, y)
w = wini(x, y)

 at t = 0. (1.4)

This setup represents the case of unlimited supply
of A to the left and unlimited supply of B to the
right of the domain Ω.

Due to the increasingly steep gradients in the
model, the numerical simulation of (1.1)–(1.4) with
large values of the fast reaction parameter λ are
challenging and costly. This is demonstrated in
[1] for values λ = 103, 106, and particularly 109.
However, studies for the model in one spatial di-
mension in [3] demonstrate that the problem is es-
sentially in the asymptotic limit for λ ≥ 106 and we
can therefore consider the appropriate limit prob-
lem of (1.1)–(1.4) as λ→∞. Standard techniques

1

Excerpt from the Proceedings of the COMSOL Conference 2009 Boston



of singular perturbation analysis would give only
the reduced problem uv ≡ 0. But [5] recently pre-
sented another approach to the problem (1.1)–(1.4)
in asymptotic limit by deriving a two component
model that is equivalent to the three species model.
The derivation from [5] is sketched in Section 2, ex-
tended to the case of two spatial dimensions. This
two component model does not have any steep gra-
dients any more and is thus significantly cheaper
computationally, as was confirmed in [1] and in [7]
for the analogous problem in one spatial dimension.

However, the two component model has features
such as a boundary condition that couples the
(derivatives of the) solution components. This and
other properties of the desired simulations make
this an excellent example to bring out the bene-
fits of several features of COMSOL Multiphysics,
which are discussed in Section 3. Finally, Section 4
presents representative simulation results for the
problem using the two component model as com-
putational tool. We refer to [1] for additional plots
from these simulations and to [1, 2, 7] for detailed
studies that confirm the accuracy and compare the
efficiency of studies based on the two component
model to ones for the three species model with
large values of λ.

2 Two Component Model

Computationally, the greatest difficulty in han-
dling the system (1.1) is the occurrence of the re-
action term λuv in each of the equations as λ� 1.
Since the difference A− B and the sum B + C are
each conserved in the first reaction, this difficult
reaction term cancels when one combines pairs of
equations in (1.1) to get

(u− v)t = (u− v)xx + (u− v)yy − uw
(v + w)t = (v + w)xx + (v + w)yy − uw

(2.1)

such that the term λuv no longer appears. This
motivates the transformation from u, v, w to the
two components

u1 := u− v,
u2 := v + w.

(2.2)

It is not immediately intuitive that it is possible to
recover the original three variables u, v, w from the
two variables u1 and u2. The key is to notice that
in the asymptotic limit λ→∞, we always have the
complementarity condition uv ≡ 0 (meaning that

uv is negligible for large λ, even though, when this
is multiplied by λ � 1, λuv can become large).
Together with the facts u ≥ 0 and v ≥ 0 for the
species concentrations u and v, we have that when
u1 = u − v > 0 we must have u 6= 0 so v = 0 and
u1 = u, while u1 = u− v < 0 similarly gives u = 0
whence u1 = −v. It then becomes possible to take

u = u+
1 := max{u1, 0},

v = −u−1 := −min{u1, 0},
w = u2 + u−1 .

(2.3)

The formulas in (2.2) and (2.3) in effect consti-
tute forward and backward transformations be-
tween the three species and the two component
models and make the two models equivalent to each
other [5].

The equivalent two component model is then

u1,t = u1,xx + u1,yy − u+
1 u2

u2,t = u2,xx + u2,yy − u+
1 u2

(2.4)

for (x, y) ∈ Ω and 0 < t ≤ tfin with boundary
conditions

u1 = α
u2,x = 0

}
at x = 0,

u1 = −β
u2,x = −u1,x

}
at x = 1

(2.5)

on the left and the right side of Ω, respectively, and

u1,y = 0
u2,y = 0

}
at y = 0 and y = 1, (2.6)

on the top and the bottom of Ω, and initial condi-
tions

u1 = u1,ini(x, y)
u2 = u2,ini(x, y)

}
at t = 0. (2.7)

Most transformations of the boundary conditions
and initial conditions follow directly from the def-
initions in (2.2); to see the second boundary con-
dition at x = 1, notice that u2,x = vx + wx = vx,
since wx = 0 at x = 1. Using u1 = u+

1 + u−1 gives
u1,x = u+

1,x + u−1,x = ux − vx. Since ux = 0 at
x = 1, we thus have u1,x = −vx and the boundary
condition u2,x = vx = −u1,x at x = 1.

The complete two component system (2.4)–
(2.7) is self-contained and computationally effi-
cient, since it does not have any steep gradients
[1]. The price is a rather unusual coupling in the
second boundary condition at x = 1.

2



3 Use of COMSOL

The computations use COMSOL Multiphysics 3.5a
on the cluster hpc in the UMBC High Performance
Computing Facility (www.umbc.edu/hpcf). COM-
SOL is run on one node with two dual-core AMD
Opteron processors (2.6 GHz, 1 MB cache per core)
and 13 GB of memory. The cluster runs the Linux
RedHat EL5 operating system. Several features of
the problem under consideration serve to highlight
the features of COMSOL:

• One of the crucial features of the reaction--
diffusion equations under consideration are
their non-linear reaction terms. Since the
physics of this problem relies on a subtle bal-
ance between the diffusion effects and these
reactions, we wish to represent them as ac-
curately as possible. Thus, we use the Gen-
eral Form of the PDEs in COMSOL in or-
der to enable COMSOL to compute symbolic
derivatives of all terms in the PDEs by auto-
matic differentiation for the highest accuracy
in the evaluation of the Jacobian in the non-
linear solver inside the implicit ODE method.
By contrast, the Coefficient Form in COM-
SOL approximates the derivatives of all terms
numerically, which is only suitable for mildly
non-linear PDEs.

• An interesting feature of the two component
problem is the boundary condition u2,x =
−u1,x at x = 1 that couples the (derivatives of
the) solution components. Many PDE solvers
have difficulty handling a boundary condition
of this type or do not permit specifying it at
all, even for the analogous problem in only one
spatial dimension. COMSOL has no trouble
with this, as all terms specified are allowed to
include also the dependent variables and their
derivatives.

• We couple COMSOL with Matlab using the
Linux command comsol matlab. With this,
a script is written so that each computation
would be using the same solver parameters
inside COMSOL. This is crucial to ensure re-
producibility of all results and useful to fa-
cilitate parameter studies, by that with re-
spect to problem parameters or with respect
to numerical parameters. Scripting is also
very useful in cases such as the two compo-
nent model, where significant post-processing

such as back-transforming to the original vari-
ables by (2.3) is necessary. But we use the
flexibility of scripting even more for the prob-
lems under consideration here. COMSOL eas-
ily allows the user to specify functional expres-
sions for boundary and initial conditions. This
is suitable for the boundary conditions here,
and changing one of them is possible in the
script. But the initial conditions desired here
will have a fairly complicated structure inside
the domain, and we moreover wish to make
changing the initial condition convenient. Us-
ing functional expressions in the COMSOL
script becomes too cumbersome and poten-
tially limiting. Therefore, we merely specify
the names of functions for the initial condi-
tions in the script, which enables the user to
write these functions outside of COMSOL us-
ing the full capabilities of high-level program-
ming languages such as if-statements, for-
loops, and vector operations on the vectors of
(x, y) values.

• We use linear Lagrange finite elements on a
uniform quadrilateral mesh with N × N ele-
ments. The studies below report results from
a 128×128 mesh, but also studies with 64×64
and 256×256 elements were performed [1]. At
the coarser mesh resolutions, some of the geo-
metric features are not as accurate as desired.
The finer mesh did not add any appreciable
detail for the particular initial conditions con-
sidered here. Clearly, computations increase
significantly in complexity, hence we do not
wish unnecessarily large values of N in pro-
duction runs. Note that the defaults in COM-
SOL are an unstructured mesh and quadratic
Lagrange finite elements. By using a struc-
tured, uniform, quadrilateral mesh, we avoid
any incidental biasing that might affect the so-
lution as result of, e.g., from element bound-
aries being at different random non-horizontal
or non-vertical angles or similar properties in-
herent to an unstructured mesh. Because we
will be interested in the exact location of in-
terfaces later, it is important to avoid any
such biasing for this problem. Because the
solutions have jump discontinuities at the ini-
tial time and will have discontinuities in their
derivatives at the reaction interfaces [5], we
use the lowest order Lagrange finite elements
available in COMSOL.

3



• COMSOL offers several ODE solvers, all of
which use implicit time stepping, which is
a necessity for efficiently solving PDEs of
parabolic type such as reaction-diffusion equa-
tions. Since we desire to compute to a large
final time approaching steady state, sophisti-
cated ODE solver features such as automatic
time stepping and method order selection up
to a high order are vital. This becomes par-
ticularly clear if you consider that we have to
expect steep initial gradients from the cho-
sen initial conditions, which requires small
time steps and low ODE method orders, but
that we wish to use large time steps and high
method orders, when the solution is smooth in
its approach to steady state. The ODE solver
used is BDF-DASPK. We use a relative tol-
erance of 10−3 and an absolute tolerance of
10−6 for the local error control in the ODE
solver, which is slightly tighter than COM-
SOL defaults. We experimented with coarser
as well as tighter tolerances. At coarser tol-
erances, some features of the solution are not
as clear. Tighter tolerances confirm the re-
sults obtained for the tolerances used, thus
these are the most effective tolerances to use.
The simulations reported below using the two
component model required 229 time steps and
took 95 seconds. This is markedly faster than
simulations for the three species model with
large λ values, which can be, say, 1,743 time
steps and 1,802 seconds for λ = 109 [1, Ta-
ble 1]. The increased numerical difficulty as-
sociated with such large λ values materializes
also in other ways, e.g., that the ODE solver
broke down for the coarse 64 × 64 mesh at
an intermediate time and we were forced to
use a coarser ODE tolerance for this case. We
choose the ODE solver BDF-DASPK because
BDF-IDA, the default solver, has trouble con-
verging at the initial conditions for the case of
large λ values. The ODE solver Generalized
Alpha was also experimented with, but this
too had some difficulties.

• We use the linear solver PARDISO, since it
is supposed to profit most from the multi-
threading available on the dual-core proces-
sors used; see [4] in the same proceedings as
this paper.

4 Results

In this section, we present representative numeri-
cal results in the form of surface and contour plots
obtained by COMSOL Multiphysics. These simu-
lations use the two component model (2.4)–(2.7) to
efficiently compute u1 and u2, and then we back-
transform to the original variables u, v, w of (1.1)–
(1.4) using (2.3).

We are interested in initial condition functions
uini, vini, wini such as shown in Figure 1, where
each connected piece of each initial concentration
has some constant value. For u in Figure 1 (a),
which has an unlimited supply with concentration
α = 1.6 at x = 0, the left hand portion of the
domain, all portions of the domain connected to it,
as well as the small disjoint disk in the upper right
of the domain have values of uini = α, and uini = 0
everywhere else. For v in Figure 1 (b), which has
an unlimited supply with concentration β = 0.8 at
x = 1, the values are vini = 0 wherever uini > 0
and wini = β wherever uini = 0. We note that by
this construction the product uv ≡ 0 at t = 0. The
concentration of wini is 0 throughout the domain at
t = 0 and not shown in the figure. The fast reaction
in the reaction model is restricted to areas of Ω
where u and v co-exist. This is only the case along
the interface through the domain where u and v
come in contact due to diffusion. The locations of
these interface lines are shown in Figure 1 (c). The
interface location is determined numerically as the
0 level of a contour plot of the quantity u−v (with
only this one contour level shown in the plot). To
allow us a concrete reference to various parts of
the domain, we use the following terminology: The
portion on the left side of the domain is called the
‘body,’ and the piece protruding from the body is
called the ‘head,’ which is connected to the body
by the ‘neck.’ The inspiration for these terms is
most evident in the interface plot in Figure 1 (c).

Figures 1, 2, 3, and 4 each show the concentra-
tions u and v and the interface where u and v come
in contact due to diffusion, at times 0, 10−3, 10−2,
and 20, respectively. After starting with sharp in-
terfaces between areas with positive u or v and
0 in Figure 1, there is a rapid initial transient in
time during which the reaction-diffusion equations
smooth out the concentrations. This effect is vis-
ible in Figures 2 and 3 for u and v. The most
intriguing feature of the model under study is the
behavior resulting for the location of the reaction

4



interface, where u > 0 and v > 0 meet by diffusion
and react rapidly. Recall that at the initial time,
these two species do not coexist and mathemati-
cally uv ≡ 0. It is only by diffusion that positive
values of both get in contact with each other and
this defines the reaction interface. At the initial
time t = 0 in Figure 1 (c), we can still clearly see
the ‘head’ connected by the ‘neck’ to the ‘body’ on
the left portion of the domain and an disjoint ‘disk’
in the upper right of the domain. By t = 10−3 in
Figure 2 (c), we see the head separating from the
body in the left portion of the domain, before it re-
attaches to the body by t = 10−2 in Figure 3 (c).
Also by the time of Figure 3, the disjointed disk in
the upper right of the domain has vanished with
its supply of the u species completely consumed.
By t = 20 in Figure 4, the solution of the problem
has reached its steady state; this is confirmed by
comparing the solutions for u, v, and w as func-
tions of 0 < x < 1 for each y to the solution of the
stationary problem (with ut = vt = wt = 0) as-
sociated with (1.1)–(1.2) in one spatial dimension
[6]. Numerically, we can moreover compare the lo-
cation of the interface in Figure 4 (c) to its known
steady state location at x∗ ≈ 0.6; see [7, Table 1].

The chosen initial conditions give rise to an in-
teresting behavior in that the head separates and
then re-attaches to the body in the left portion of
the domain, while the disjoint disk disappears. Ad-
ditional plots for this simulation based on the two
component model are shown in [1], along with com-
parisons to studies with the three species model for
several values of λ with respect to accuracy and ef-
ficiency.

Acknowledgments

The work reported in this paper is based on con-
sulting projects in the Center for Interdisciplinary
Research and Consulting (www.umbc.edu/circ).
The hardware used in the computational stud-
ies is part of the UMBC High Performance Com-
puting Facility (HPCF). The facility is supported
by the U.S. National Science Foundation through
the MRI program (grant no. CNS–0821258) and
the SCREMS program (grant no. DMS–0821311),
with additional substantial support from the Uni-
versity of Maryland, Baltimore County (UMBC).
See www.umbc.edu/hpcf for more information on
HPCF and the projects using its resources.

References

[1] Aaron Churchill, Matthias K. Gobbert, and
Thomas I. Seidman. Efficient computation for
a reaction-diffusion system with a fast reac-
tion in two spatial dimensions using COMSOL
Multiphysics. Technical Report HPCF–2009–
7, UMBC High Performance Computing Facil-
ity, University of Maryland, Baltimore County,
2009.

[2] Aaron Churchill, Guan Wang, Matthias K.
Gobbert, and Thomas I. Seidman. Efficient
simulation of a reaction-diffusion system with a
fast reaction in the asymptotic limit. In prepa-
ration.

[3] Michael Muscedere and Matthias K. Gobbert.
Parameter study of a reaction-diffusion system
near the reactant coefficient asymptotic limit.
Dynamics of Continuous, Discrete and Impul-
sive Systems Series A Supplement, pages 29–
36, 2009.

[4] Noemi Petra and Matthias K. Gobbert. Par-
allel performance studies for COMSOL Multi-
physics using scripting and batch processing. In
Yeswanth Rao, editor, Proceedings of the COM-
SOL Conference 2009, Boston, MA, 2009.

[5] Thomas I. Seidman. Interface conditions for
a singular reaction-diffusion system. Discrete
and Cont. Dynamical Systems, to appear.

[6] Ana Maria Soane, Matthias K. Gobbert, and
Thomas I. Seidman. Numerical exploration of
a system of reaction-diffusion equations with
internal and transient layers. Nonlinear Anal.:
Real World Appl., 6(5):914–934, 2005.

[7] Guan Wang, Aaron Churchill, Matthias K.
Gobbert, and Thomas I. Seidman. Efficient
computation for a reaction-diffusion system
with a fast reaction with continuous and dis-
continuous initial data using COMSOL Mul-
tiphysics. Technical Report HPCF–2009–3,
UMBC High Performance Computing Facil-
ity, University of Maryland, Baltimore County,
2009.

5



(a) u(x, y) vs. (x, y)

(b) v(x, y) vs. (x, y)

(c) interface vs. (x, y)

Figure 1: u, v, and the interface at t = 0.

(a) u(x, y) vs. (x, y)

(b) v(x, y) vs. (x, y)

(c) interface vs. (x, y)

Figure 2: u, v, and the interface at t = 10−3.

6



(a) u(x, y) vs. (x, y)

(b) v(x, y) vs. (x, y)

(c) interface vs. (x, y)

Figure 3: u, v, and the interface at t = 10−2.

(a) u(x, y) vs. (x, y)

(b) v(x, y) vs. (x, y)

(c) interface vs. (x, y)

Figure 4: u, v, and the interface at t = 20.

7




