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Abstract: Multi-physics simulations of the 
evolution of cure induced stresses in a 
viscoelastic thermoset polymeric resin are 
presented.  The viscoelastic material model is 
implemented with a relaxation spectrum with 34 
relaxation time constants.  The trends in 
viscoelastic stresses at different degrees of cure 
and temperatures are compared and contrasted 
with an equivalent cure–dependent (but time-
invariant) elastic material model.  The material 
models are implemented in the context of the 
cure of a thick thermoset resin part, to explore 
the combined effect of multiple phenomena – 
mold-part interaction, cure shrinkage strains, 
thermal strains, and the exothermic heat of 
reaction resulting in a two way coupling between 
heat transfer and chemical kinetics – on the 
evolution of residual stresses and springback. 

 
1. Introduction 

Accurate predictions of residual stresses in 
thermoset resins, adhesives, and composites 
require detailed accounting of multiple 
phenomena – mold-part interaction, cure 
shrinkage strains, and thermal strains, the 
kinetics of resin cure, and the evolution of the 
resin properties with temperature and degree of 
cure.  Residual stress development and shape 
distortions in thick thermoset sections are further 
influenced by large temperature gradients across 
the thickness driven by the exothermic heat of 
reaction.  The resin modulus, a key parameter 
governing the magnitude of residual stresses, is a 
strong function of the degree of cure ( ) and the 
temperature history.  The curing resin also 
displays time dependent stress relaxation, 
governed by intrinsic relaxation times that are 
functions of the degree of cure and the 
temperature [1].  In this report, the simulations of 
evolution of cure-induced residual stresses and 
springback in a thick thermoset section are 
presented. The cure- and temperature- 
dependence of the viscoelastic stresses are 
modeled by employing an empirical cure-
temperature-time superposition scheme 
(described in Eom et al., [2]) that accounts for 

the chemo-thermo-rheological complexity of the 
curing resin (different mechanisms of stress 
relaxation prior to and post gelation).  Diffusion 
limited regimes in the cure kinetics of the 
thermoset are also accounted for in this scheme. 
 

2. Problem Definition 
Geometry and Boundary Conditions: The 
geometry and thermo-mechanical boundary 
conditions for the simulation are shown in Figure 
1: 

 

Figure 1:  This simulation is implemented in two 
stages:  (I)  the  first  stage  involves  the  cure  of  a  2  cm 
thick thermoset in the shape of a right-angled elbow, 
with the longer (outer) dimension of each arm 10 cm, 
under constraint between two 5 mm thick structural 
steel molds (Figure 1a) – to study the evolution of 
residual stress, using the thermal cycle shown in 
Figure 1c; (II) the second stage involves the re-heating 
of the cured elbow geometry (after removal of the 
molds) under point constraints (Figure 1b), using the 
thermal cycle shown in Figure 1d - to explore spring-
back effects.  The evolution of temperature, cure, and 
stresses are investigated along the diagonal traversing 
the thickest portion of the thermoset resin in the elbow 
geometry at the points A (0,0) –B (0.0025,0.0025) –C 
(0.01358,0.01358) –D (0.0175,0.0175) –E (0.02, 
0.02), (refer to Figure 1a). 

 
Cure Kinetics: The kinetics of the cure of this 
resin system [2] is characterized by two distinct 
regimes: the autocatalytic model, valid in the 
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conversion ( ) range 0 – 0.5, is given as: 
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td
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1K  and 2K  are the rate constants and 01E  and 

02E  are the Arrhenius activation energies 
associated with 1K  and 2K  respectively.  The 
nth-order model, applicable at higher conversions 
(  > 0.5,) is given as: 

n
effK

td
d 1    (3) 

In the above expression, n  is the reaction order.  

effK  is the overall effective reaction rate 
constant that takes into account both chemical 
and diffusion aspects that control the kinetics at 
high conversions (cf. [2]).  effK  is given as, 
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K  is the rate constant for chemical kinetics (non 
diffusion-controlled), C  is a constant, and c  
is a critical conversion above which diffusive 
effects  come  into  play.   0E  is the activation 
energy associated with K .   Eom  et  al.’s  
estimates [2] for these kinetic parameters for the 
epoxy-amine resin system are listed in Table 1.  
The simulated evolution of conversion as a 
function of time for isothermal cure of the 
epoxy-amine system is plotted in Figure 2 at 
different isothermal cure temperatures.  It can be 
seen that diffusion effects (as quantified by n and

c ) prevent the cure reaction from reaching 
completion, and the final degree of cure shows 
progressive decrease with reduction of cure 
temperatures. 
 
Heat Transfer: The conductive heat transfer 
within the structural steel molds is defined as 
shown below. 

0)( Tk
t
TCP   (mold) (5) 

In the above equation, , C p, and k are 
respectively the density, specific heat, and 
thermal conductivity of the material.  The 
conductive heat transfer within the curing resin 
accounts for the heat generation due to the 
exothermic heat of reaction reactionH  (Table 2). 
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Table 1. Kinetic parameters for isothermal cure of 
epoxy-amine resin system (From Eom et al. [2]) 

Parameter Value 
Autocatalytic Model (Conversion range 0.0 – 0.5)  

K01 [1/s] 2.7321 x 105 

K02 [1/s] 3.8231 x 105 

E01 [J/mol] 7.2776 x 104 

E02 [J/mol] 6.6934 x 104 

ma 1.07 
na 2.43 

Nth-Order Model (Conversion range 0.5 – 1.0)  
K0 [1/s] 29.10 

E0 [J/mol] 3.58 x 104 

n -0.0403 x T[K] +19.48 
C 69 

c 0.0092 x T[K] – 3.14 

Figure 2: Calculated conversion of epoxy under 
isothermal curing conditions at four isothermal cure 
temperatures (°C, indicated in the legend) 
 
Table 2. Properties  of  the  resin  employed  for  
calculation of cure-induced stresses1 
Density  [kg / m3]  1.2x103 

Specific Heat  [J/kg-K] PC  1.25x103 

Heat of Reaction [J/mol] reactionH  
100000 

Thermal Conductivity  
[W/m-K] 

k  0.2 

Poisson’s Ratio  0.4 
CLTE  [ppm/K]  100 
Total Specific Volumetric 
Cure Shrinkage  - 0.06 

1These values are typical of epoxy resins (e.g., [3, 4]) 
 
Table 3. Properties of structural steel [5]  
Density  [kg / m3]  7.85x103 

Specific Heat  [J / kg K] PC  
475 

Thermal Conductivity [W/m-K] k  44.5 

Young’s Modulus  [GPa] E  
200 

Poisson’s Ratio  0.33 
CLTE [ppm / K]  12.3 
 
Structural Mechanics: Assuming the body 
forces to be negligible, the momentum balance:  

0      (7) 

shrinkageV

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Co
n

ve
rs

io
n

Time [s] 

170

165

160

155



 

was implemented in the geometry shown in 
Figure 1 using the plane strain approximation, in 
which the geometry is considered infinitely long 
in z- (3-) direction, thereby making it possible to 
ignore any normal or shear strains in that 
direction: 0132333 .  The overall 
stress, , has contributions from an isotropic 
(pressure) component, p, and a deviatoric stress 
component, .   

Ip     (8) 
The isotropic component of the stress is defined 
in terms of the bulk modulus, k , and isotropic 
strains: 

)()(trace 332211kkp
 

(9) 
The deviatoric strains are defined as: 

I)(trace
3
1

deviatoric    (10) 

The evolution of the isotropic stresses, due to 
thermal strains (driven by the coefficient of 
linear thermal expansion, ( )) in the structural 
steel molds, is modeled by modifying the 
pressure term: 

)}(3)(trace{)( refTTTp k  (mold) (11) 
For this analysis, the reference temperature for 
thermal  strains  was  taken  to  be  373K.   On  the  
other hand, the isotropic stresses generated in the 
thermoset resin are a combination of thermal 
stresses and those due to chemical shrinkage: 

)}(3)13 1(3)(trace{),( refTTshrinkageVTp k (resin) (12) 
The relevant properties of the epoxy resin (cf. [3, 
4]) and the structural steel mold [5] are listed in 
Tables 2 and 3 respectively. 
 
COMSOL Multiphysics® implementation of 
viscoelastic model [6]: The generalized 
Maxwell model is expressed as a Prony series: 

i
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i
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In the above equation, the coefficient i  can be 
considered to be the relative stiffness (Gi 
represents the absolute stiffness) of the spring in 
branch i of the generalized Maxwell model. 
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The components of and the deviatoric strains 
are then related, by introducing the variable qi, 
(equivalent  to  the  extension  of  the  spring  in  
branch i of the generalized Maxwell model). 
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Cure-temperature-time shift model: The 
viscoelastic properties of the curing thermoset 
resin  were  also  studied  by  Eom  et  al.  [2]  using  
isothermal dynamic shear modulus 
measurements for several degrees of cure, at a 
given cure temperature.  The relaxation time of 
the resin at any conversion, , can be calculated 
by shifting the relaxation times at the reference 
conversion to the instantaneous conversion. 

ixTi A     (18) 
The corresponding relaxation of shear modulus 
in real time, ),,( TtG r , at different conversions 
can then be calculated by employing the shifted 
relaxation times, Ti , in Equation (13).  In order 
to account for the introduction of additional, and 
significantly different, relaxation mechanisms for 
the partially cross-linked gel that comes into 
existence post gel point (compared to the 
relatively less cross-linked viscous resin that was 
present up to the onset of gelation,) and also to 
account for the temperature dependent limiting 
conversion, the experimental trends in shift 
factors with respect to the degree of cure and the 
temperature were then fitted by Eom et al. [2] 
using two empirical shift models, to account for 
the two conversion regimes.  In the conversion 
range 0.0 to 0.7 (before gelation,) only the cure-
dependence of the shift factors needs to be 
accounted for, since the shift factors were 
observed to be temperature invariant: 

21log CCAx    (19) 
For the conversion range 0.7 – 1.0, in which 
gelation effects become dominant, the 
dependency of the shift factor on both 
conversion and temperature needs to be 
accounted for, as shown in Equation (20). 

sgel m
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(20) 

With the boundary conditions, 
gelx AAlog  at gel ; 0log xA  at f . (21) 

The constants 1C  , 2C , gelA , and H , as well as 
the definition of the temperature dependent 
parameters f  and sm ,  as evaluated by Eom et 
al.  are listed in Table 4.  In order to account for 
the growth of G0 with the degree of cure (cf. 
Equations (13-15)), Eom et al. [2] modeled the 
series coefficients of the relaxation spectrum 
using a phenomenological relationship: 

D
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0G  is the minimum measurable relaxed 
modulus, 0uG  is the un-relaxed modulus at the 
reference conversion, D  is a parameter that 
determines the shape of the relaxation curve 
(which, in turn, is governed by the relaxation 
times, i , of the resin), B  is a temperature 
dependent material parameter, and pn  is  a  
material constant.  Eom et al. [2] employed 
different values for parameters in Equation (22) 
in the conversion ranges before and after 
gelation.  These parameters are also listed in 
Table  4.   G  was  assigned a  value  of  0.01  Pa.   
The bulk modulus, k , and the elastic modulus, E 
of the curing resin are then calculated from the 
shear relaxation modulus, assuming a constant 
Poisson’s ratio, 0.4, as shown below [7]. 

),,()1(2),,( TtGTtE r   (23) 
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Table 4.  Parameters for linear viscoelastic model [2] 
Parameter : 0.0 – 0.7 : 0.7 – 1.0 

Parameters for evaluation of time-cure-temperature 
shift factors 

1C  30.6 --- 

2C  -39.7 --- 

gelA  --- -17.5 

H  --- 2 

gel  --- 0.7 

f  --- 0.0074 T (K)-2.32 

sm  --- 0.0346 T (K)-14.23 

Parameters for evaluation of series coefficients of the 
linear viscoelastic model 

G
 0.01 0.01 

0G  1.0 x 10-4 1.0 x 103 

0uG  1 x 104 1.5 x 108 

)(log B  0.1 T (K) – 62.8 0.332 T (K) – 149 

pn  10 22 

The viscoelastic material model has been 
implemented in the current simulation study with 
34 relaxation time constants (ranging from 10-1s 
to 1042s corresponding to limiting cure at 
170°C,) as employed by Eom et al. [2].  The 
master relaxation spectra ( iG , i ) evaluated 
using Equations (18-22), corresponding to the 
limiting cures at four different temperatures, with 
the parameters in Table 2, are plotted in Figure 3. 

Figure 3: Master relaxation spectra of the epoxy-
amine resin system corresponding to the limiting cure 
at four different temperatures (°C). 

 
Equivalent Elastic Models: In addition to the 
viscoelastic material model, an equivalent cure- 
and temperature- dependent (but time invariant) 
elastic material model was considered, with the 
magnitude of the elastic shear modulus at any 
degree of cure set to the value of the viscoelastic 
shear relaxation modulus at extremely small 
times, at the same degree of cure. 

),,s10(),( 12
_ TtGTG relasticcure  (25) 

In this model, only the cure dependence of 0G  is 
captured. The corresponding cure-dependent 
elastic bulk and the Young’s moduli are 
calculated using ),(_ TG elasticcure  analogously 
to Equations (23) and (24) respectively. 
 

3. Results and Discussion 
The temperature and degree of cure 

transients in the thermoset resin during the first 
cure cycle within the mold (refer to Figure 1a, 
1c) - at the points A-B-C-D-E  - are shown in 
Figure 4a and 4b respectively.  At points A and 
E, which are in contact with the corners of the 
structural steel molds, the temperature transients 
mimic the imposed thermal cycle on the outer 
surfaces of the molds (Figure 4a).  The degree-
of-cure transients also evolve similarly at points 
A  and  E  (Figure  4b).   At  location  B,  the  
enhanced conductive heat transfer to the 
proximal mold walls in the vicinity of corner A 
results in temperature and degree of cure 
transients very similar to those at locations A and 
E.  By contrast, the temperature rise at locations 
C and D, which are closer to the re-entrant 
corner E, significantly trails the mold heating 
cycle (Figure 4a). The progress of cure is also 
substantially slower at points C and D, compared 
to  A,  B  or  E,  for  the  initial  1000s  (Figure  4b).  
However, as cure progresses, the exothermic 
heat evolving at C and D cannot be dissipated 
fast  enough  (owing  to  the  thickness  of  the  part  
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and the poor conductive heat removal to the 
mold walls in the vicinity of E,) and the 
temperature at the these rapidly points rises 
above  that  at  the  mold  surface  (Figure  4a).   At  
the timescales corresponding to the temperature 
maximum (~20°C above the mold temperatures,) 
the conversion at the locations C and D also 
shows  a  rapid  increase  and  exceeds  that  at  the  
surfaces (Figure 4b).  During the cool-down 
period starting at 5000s, the temperature drop is 
also slowest at the location C.  The final degrees 
of cure at the various points are dominated by the 
diffusion controlled limiting conversion 
corresponding to the hold temperature (Equation 
(4),) and do not show a very large spread. 

 

 

Figure 4:  The  simulated  evolution  of  (a)  
temperatures, and (b) degrees of cure, in the thermoset 
resin at the points A-B-C-D-E during the first cure 
cycle (cf. Figures 1a, 1c,) within the mold for 10000s 
 

The thermo-chemical residual stress 
transients within the curing thermoset resin were 
estimated by the simultaneous FE solutions of 
the kinetic model, the heat balance, and the 
momentum balance.  In Figure 5a the transients 
of the maximum principal stress during the first 
cure cycle within the mold (Figures 1a, 1c), 
estimated using the elastic material model (cf. 
Equation (25)) have been plotted at the points A-
B-C-D-E (cf. Figure 1a).  At location A, the 
stresses start building up only around 2000s, 
corresponding to the gel point conversion (

7.0gel ) of the thermosetting resin.  

Subsequently, as the limiting conversion is 
attained, the magnitude of the stress stabilizes up 
to 5000s.  Starting at 5000s, during the cool-
down phase, the stresses increase once again, due 
to the onset of constrained thermal shrinkage 
during cool-down, and stabilize at the final 
value.  While the location A is subjected to the 
constraining effects of the mold, at the locations 
B, C, D, and E, the resin is relatively 
unconstrained; this results in a different 
evolution of stresses at these locations compared 
to  that  at  A.   For  the  elastic  resin,  however,  the  
differences in the evolution of stress transients 
notwithstanding, since the spatial distribution of 
the  final  degree  of  cure  at  10000s  is  not  very  
broad (refer to Figure 4b), and the temperatures 
are spatially invariant, the distribution of stresses 
within the bulk, as demonstrated by the 
magnitudes of the maximum principal stresses at 
points B, C, and D, is also relatively narrow. 
 

 

Figure 5:  The estimated transients of the maximum 
principal stress at the points A-B-C-D-E during the 
first  cure  cycle  (cf.  Figures  1a,  1c,)  obtained  by  
employing cure- and temperature-dependent (a) linear 
elastic material model, and (b) viscoelastic material 
model. 

 
In Figure 5b, the evolution of the maximum 

principal stresses estimated using the viscoelastic 
material model have been plotted at the points A-
B-C-D-E during the first cure cycle within the 
mold.  In the viscoelastic scenario, all the 
thermo-chemo-mechanical mechanisms 
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underlying the development of residual stresses 
discussed in the context of the elastic material 
model apply, but additionally, the viscoelastic 
relaxation of stresses also comes into effect.  
Comparison of Figures 5a and 5b reveals that 
accounting for viscoelastic stress relaxation 
results in significantly lower estimates for 
stresses compared to those obtained with the 
linear elastic material model.  Even after the 
onset of gel point (between 2000s and 5000s,) 
the stresses in the viscoelastic material 
undergoing cure are insignificant since the 
relaxation times continue to remain fairly small 
up to very close to the limiting conversions.  
Relaxation of the stresses within the core 
(locations C and D) during the isothermal hold 
up to 5000s is further expedited by the high 
temperatures in the core due to the exothermic 
heat.  After 5000s, since the locations C and D 
cool down much slower than the mold (cf. 
Figure 4a,) these locations experience significant 
dwell-times at temperatures which are 
substantially higher than the mold temperatures; 
this allows quicker relaxation of stresses brought 
about by thermal shrinkage, and slower build-up 
of stresses.  However, at the point B, since the 
cool-down occurs at nearly the same rate as that 
at the mold, the stresses do not relax as rapidly, 
and therefore build up faster to a significantly 
greater value compared to the stresses at C and D 
(and comparable to that estimated with the 
elastic material model).  Therefore at the end of 
cure, even though the temperatures are spatially 
invariant, and the distribution of final degree of 
cure is not very broad, the distribution of stresses 
within the bulk, as demonstrated by the 
magnitudes of the maximum principal stresses at 
points B, C, and D, is quite broad, owing to the 
significantly different thermal history at point B 
compared to those at points C and D. 

 
The contour maps of the maximum principal 

stresses, estimated with the elastic material 
model and the linear viscoelastic material model, 
at  the  end  of  the  first  cure  cycle  (10000s,)  are  
shown in Figures 6a and 6b respectively.  
Figures 6a and 6b also show the deformations 
brought  about  by  the  cure  of  the  resin.   The  
edges of the thermoset in contact with the mold 
are for all practical purposes fully constrained 
due to the large difference between the 
coefficients of linear thermal expansion of the 
mold and the resin.  However, the two exposed 
edges of the curing resin, which are constrained 
by the steel molds at their end points alone, 
deform into a concave arc as a result of the 

shrinkage strains.  The displacements as the 
result of shrinkage strains in the exposed edges 
are greater for the viscoelastic material than for 
the elastic material. 

(a) 

(b) 

Figure 6: Contour map of the estimated maximum 
principal stress, and the deformation of the geometry, 
at the end of the first mold-constrained (cf. Figure 1a, 
1c) cure cycle (at 10000s,) estimated by employing 
cure- and temperature-dependent (a) linear elastic 
material model, and (b) viscoelastic material model. 

 
As discussed earlier, significant stress 

gradients along the diagonal of the elbow 
geometry may be observed in the case of the 
viscoelastic material (Figure 6b)  At the same 
locations, the stresses in the elastic material, 
though higher in magnitude, show little variation 
(Figure 6a).  The temperature, cure, and stress 
distributions, the latter shown in Figure 6, at the 
end  of  the  first  cure  cycle  provide  the  initial  
conditions for the second phase involving the 
heating of the cured elbow (after removal of the 
molds,) under point constraints (cf. Figures 1b 
and  1d).   The  removal  of  the  molds  and  the  
heating would result in the relaxation of the 
thermo-chemically induced residual stresses that 
developed under the constraint of the molds 
during the first phase of curing.   

 
Figure 7a and 7b show the final shapes of 

the cured resin elbow at the end of the second 
heating cycle, predicted with cure-dependent 
elastic and viscoelastic models respectively.  
Upon removal of the mold constraints, shrinkage 
of the arms of the elbow is observed with both 
elastic and viscoelastic material models.  In case 
of the elastic material model (Figure 7a,) the 



 

deformed concave shape of the short edges of the 
elbow instantaneously straightens out, indicating 
the release of elastic stored energy upon release 
of constraints.  Moreover, for the elastic material 
model, in the absence of significant variation in 
stresses  along  the  diagonal  of  the  elbow  (at  the  
end of the first cure cycle), the residual stresses 
are relieved uniformly across the thickness of the 
elbow upon removal of constraints; this results in 
uniform  shrinkage  across  the  thickness  of  the  
part, and thus there is no shape distortion (or 
bending). 

(a) 

(b) 

Figure 7:  The surface map of total displacement, and 
the boundary deformation of the cured elbow 
geometry at the end of the second partially-
constrained (cf. Figure 1b, 1d) cure cycle (at 15000s,) 
estimated by employing (a) linear elastic material 
model, and (b) viscoelastic material model. 

 
By contrast, as seen in Figure 7b, in case of 

the viscoelastic material model, the deformed 
concave shape of the short edges of the elbow is 
maintained even upon removal of mold 
constraints and heating, indicating the relatively 
insignificant magnitudes of elastic stored energy 
due to viscoelastic relaxation of stresses.  
Moreover, for the viscoelastic material model, in 
the presence of large gradients in stresses across 
the diagonal of the elbow (at the end of the first 
cure cycle, cf. Figure 6b), the removal of mold 
constraints results in non-uniform shrinkage 
across  the  thickness  of  the  part  (with  the  
maximum shrinkage occurring in areas 
corresponding to the maximum residual 
stresses), and thus there is significant shape 

distortion (or bending) in the viscoelastic 
material. 
 

SUMMARY 
The numerical implementation of the multi-

physics problem, involving chemo-thermo-visco-
elastic couplings, has been successfully 
demonstrated in the context of development and 
relaxation of thermally and crosslink-shrinkage 
induced stresses during cure of a thick epoxy-
amine thermoset section.  Phenomenological 
aspects such as diffusion limited cure kinetics, 
incomplete cure, the viscoelastic behavior of the 
resin before as well as after the onset of gelation, 
and the evolution of the resin relaxation 
spectrum with the degree of cure have been 
captured in detail.  It is observed from these 
simulations that while the instantaneous stresses 
in a linear elastic material are only governed by 
the instantaneous states of temperature and 
degree of cure, the stresses in a viscoelastic 
material are strongly governed by the thermal 
history experienced by the resin.  The spatial 
gradients in temperature and cure in thick 
sections (enhanced by the exothermic heat of 
reaction) can result in significant spatial 
variation of viscoelastic residual stresses even 
after equilibration of the temperature fields and 
achievement of uniform cure; these subtle 
effects, which have a significant impact on the 
springback behavior, are not captured by 
simulations with elastic material models.   
 

ACKNOWLEDGMENTS 
The  author  would  like  to  thank  Arun  M.  

Kumar, Hamid Kia, Prakash Mangalgiri, 
Sampath Vanimisetti, and Pete Foss for 
reviewing this article, and useful discussions. 

 
REFERENCES 

1. D. Adolf, and J. E. Martin, Macromolecules, 
29, 3700 (1990) 
2. Y. Eom, L. Boogh, V. Michaud, P. 
Sunderland, and J.- A. Manson, Polymer 
Engineering and Science, 40(6), 1281 (2000) 
3. T. A. Bogetti, and J. W. Gillespie Jr., Journal 
of Composite Materials, 26, 626 (1992) 
4. L. G. Zhao, N. A. Warrior, and A. C. Long, 
Materials Science and Engineering A, 452–453, 
483 (2007) 
5. COMSOL® 3.5a Property Material Database 
6. COMSOL Multiphysics Structural Mechanics 
Module Model Library, Version 3.4, p 443 (2007) 
7. S. P. Timoshenko, and J. N. Goodier, Theory 
of Elasticity, Third Edition, McGraw Hills 
International Edition, Singapore (1970) 

 




