

Electromagnetic Simulation of Split-Core Current Transformer for MV Applications

OCTOBER 3-5, 2018

COMSOL CONFERENCE 2018, BOSTON

Nirmal Paudel*, Vivek Siddharth, Steve Shaw & David Raschka

R&D, Instrument Transformers & Distribution Components
Pinetops, NC

Background Information

- Instrument transformers: current transformers (CTs) & voltage transformers (VTs) are used for metering, monitoring, and protection and control application to measure current or voltage respectively.
- CTs & VTs convert high current and high voltage into a low measurable values so that it is safe to connect to the IED, controller, meters etc.
- CTs & VTs are installed during construction or need replacement.
- Preferred to replace the old unit without service disconnection.
- Clamp-on/Split-core type CT design can be installed without service disconnection.
- CTs are not safe due to the high open circuit voltages.
- Split-core CT (also called sensor) which convert the primary input current into measurable voltage signal is safe due to low output energy level.
- Industry is slowing transitioning to the sensor from CTs or VTs.

Current Transformer

Voltage Transformer

Current Transformers

Split-core CT/sensor

Introduction & Working Principle

- The time-varying AC current through the primary conductor produces an AC magnetic fields around it.
- The magnetic core provide a easy path for this flux and enhance it.
- When this AC magnetic flux is passing through the core, the voltage is induced in the secondary coils (wrap around the core) due to the Faraday's law of electromagnetic induction.
- The split core design is used with a small air-gaps on two places.
- All secondary coils are connected in series with the load resistor. The meter is connected across the R_{I} .
- The primary current is converted into appropriate voltage signal in the secondary load resistor (600A: 10VAC).
- Design for metering application with accuracy > 1%.
- For submersible underground vault application.

Design Objectives & Challenges

- To design and manufacture a submersible CT that will be operational in the vaults for current measurement in protection applications.
- Developing a reliable device to measure current in a harsh environment, requiring to be submerged up to 2m deep of water.
- Obtain 1% accuracy performance.
- Sensor should be easily installed without any tools & service interruption.
- Test Performed:
 - EMC testing,
 - Vibration testing
 - IP testing.

** Standards used for type testing were both IEC and IEEE because an IEEE sensor standard does not exist.

Design Challenges:

- Determining shape, size, weight, and winding turns
- Determining core shape, size etc.
- Split Core adds challenges to the design.
- Accuracy
 - Primary cable centering
 - Cross Talk (three phase orientations, conductor size, sensor positioning etc.)
- Submersible/water proof design for 2m deep vaults
- Pass all related industry standard tests.
 - BIL , STC, EMC, IP, Vibration, Accuracy etc.

Single Sensor Simulation

Induced Voltage vs Number of Turns

- The simulation of a single sensor is perform to find the number of turns in the secondary coil that gives around 10V across the load resistor.
- When the number of turns increased in the secondary, the open circuit voltage increased accordingly
- When the load resistor is connected across the secondary, based on the load resistor connected, the output voltage can sometime decreased.
- In this particular situation, the load resistor is comparable with the secondary coil internal resistance.
- This results demonstrates the importance of FEA & Electrical Circuit co-simulation in product design.
- The result was used to prototype the sample and fine tuning for 10V output was done through load resistor modification.
- In this simulation, the impedance of the meter/controller is also considered.

Simulation results of voltages (V) while varying the number of turns in secondary coil with and without R_L .

Number of turns	Voltage drop in coil resistance	Voltage across R _I	Open circuit voltage
4000	19.138	15.337	130.5
4500	19.486	13.774	146.99
5000	19.771	12.482	163.36
5500	20.015	11.402	179.7
6000	20.237	10.489	196.17

Single Sensor Simulation in COMSOL Multiphysics

Physics Equations & Geometry

Maxwell-Ampere's law including the displacement current as:

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial \mathbf{t}} = \sigma \mathbf{E} + \mathbf{J_e} + \frac{\partial \mathbf{D}}{\partial \mathbf{t}}$$
 (1)

• For time-harmonic fields, the magnetic flux density, **B** and electric field **E** are defined as in terms of the magnetic vector potential, **A** as

$$\mathbf{B} = \nabla \times \mathbf{A} \tag{2}$$

$$\mathbf{E} = -\mathrm{j}\omega\mathbf{A} \tag{3}$$

- Now, combining the above two equations with the constitutive relationships $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) \& \mathbf{D} = \epsilon_0 \mathbf{E}$
- the Ampere's law for time-harmonic applications becomes

$$(j\omega\sigma - \omega^2 \epsilon_0)\mathbf{A} + \nabla \times (\mu_0^{-1}\nabla \mathbf{A} - \mathbf{M}) = \mathbf{J_e} \quad (4)$$

- This is the governing equation that is being solved when *Magnetic Fields* physics is used in *Frequency Domain* in COMSOL Multiphysics.
- To obtain a unique solution, the explicit gauge called *Coulomb gauge*

$$\nabla \cdot \mathbf{A} = 0 \tag{5}$$

Geometry of a single sensor setup.

Uneven wire distributed winding around a toroidal air-gaped core

Quarter geometry of a single sensor setup.

Single Sensor Simulation in COMSOL Multiphysics

Physics Setup & Boundary Conditions

- The *Primary Conductor* is modeled as a *Solid conductor* using a **Coil** feature. The sector feature is used, cross-section area factor, F_A =4. Input and Output features are applied on two ends of conductor. Excited using the current feature (I = 60A to 600A).
- The Secondary Coil is modeled as a Homogenized multi-turn coil
 using a Coil feature. Input and Output features are applied on two
 ends of conductor. Excited using the External Circuit, connected load
 circuit and meter/controller.
- The *Perfect Magnetic Conductor* boundary condition $n \times H = 0$ is imposed where the tangential component of magnetic field and also the surface current density is zero.
- This condition is used on the exterior boundaries to specify the symmetry condition for electric fields and electric currents.
- The rest of the external boundaries is default Magnetic Insulation boundary condition.

Geometry of a single sensor setup.

Uneven wire distributed winding around a toroidal air-gaped core

Quarter geometry of a single sensor setup.

Nonlinear Magnetic Core

Simplification

- The nonlinear magnetic BH curve (DC magnetization) converted to equivalent AC effective HB Curve using the Effective Nonlinear Magnetic Curves Calculator App from COMSOL Application Library.
- This effective HB curve is then used in modeling the magnetic core.
- It was found that the magnetic permeability is almost linear in the entire core due to low magnetic flux density.
- Homogenized anisotropic conductivity and permeability is used.

$$\begin{bmatrix} \sigma_r & & \\ & \sigma_{\emptyset} & \\ & & \sigma_z \end{bmatrix} = \begin{bmatrix} \frac{\sigma_c}{1000} & & \\ & & \sigma_c & \\ & & & \sigma_c \end{bmatrix}$$
 (1)

$$\begin{bmatrix} \mu_r & & \\ & \mu_{\emptyset} & \\ & & \mu_z \end{bmatrix} = \begin{bmatrix} \frac{\mu_c}{1000} & & \\ & \mu_c & \\ & & \mu_c \end{bmatrix}$$
 (2)

where, $\sigma_c = 1.9608 \ [S.m^{-1}]$ is the core electrical conductivity and $\mu_c = 26400$ is the relative permeability of the linearized effective BH curve of M4 steel core.

Three different cross-sections of cores.

Magnetic Flux and Current Density Plot

Geometry & Mesh

Geometry

Meshing

Configurations Studied

Configuration of few combination studied for cross-talk simulation for Core-A, Core-B and Core-C.

Simulation Results: V_b vs Bobbin Angle

Output voltage of sensor placed in phase B with Core-B used and when the coils in secondary are placed next to the airgaps.

Output voltage of sensor placed in phase B with Core-B used and when the coils in secondary are placed away from the air-gaps.

Results for few configurations

Vb	% Error	la	lb	Ic
8.9595	0	0	600A	0
8.907	-0.585970199	600A	600A	0
8.9055	-0.602712205	0	600A	600A
8.852	-1.199843741	600A	600A	600A

Vb	% Error	la	Ib	Ic
10.5071	0	0	600A	0
10.4848	-0.212237439	600A	600A	0
10.4809	-0.249355198	0	600A	600A
10.458	-0.467303062	600A	600A	600A

Vb	% Error	la	lb	lc
8.8927	-0.74558	0	600A	0
8.8472	-1.25342	600A	600A	0
8.8448	-1.28021	0	600A	600A
8.7984	-1.79809	600A	600A	600A

% Error la 10.468 -0.37213 600A 10.455 -0.49586 600A 0 600A 10.454 - 0.50537 600A 600A 10.419 - 0.83848 600A 600A 600A

Simulation and experimental results the crosstalk on different core cross-section design.

Features	Methods	Core A	Core B	Core C
Accuracy	Measurements	0.90%	0.60%	0.30%
Spread/Range	Simulations	0.8%	0.56%	0.42%
Cross-talk error	Measurements	1.10%	0.80%	1.30%
(position & orientation)	Simulations	1.20%	0.91%	1.25%

Flux lines around conductor and sensor (2D View)

Submersible Split Core Sensor

Final Product Specifications

Ratings for the split-core sensor (RSS-1).

Rated primary current	600 [A]
Rated extended primary current	1200 [A]
Rated secondary voltage	10 [V]
Accuracy class	1%
Insulation class	600 [V]
Maximum system voltage	0.66 [kV]
Rated frequency	60 [Hz]
Power frequency test voltage	4 [kV]
Lightning-impulse test voltage	10 [kV]
Rated continuous thermal current	1200 [A]
Rated short-time thermal current	12 [kA]
Duration of rated short-time thermal	1 [s]
current	
Rated dynamic current	32.4 [kA]
Dimensions	192x172x54
Weight	4.5 [kg]
Cable length of electronic	22.9 [m]
transformer	

ALL DIMENSIONS IN [] ARE METRIC.

#