

Multiphysics Approach to Sediment Transport in Shallow Water

Ekkehard Holzbecher, Ahmed Hadidi

German Univ. of Technology in Oman (GUtech)

E-mail: ekkehard.holzbecher@gutech.edu.om

Flash Floods

COMSOL Conference 2018 Lausanne

Rapid flooding due to

- heavy rain in a watershed
- meltwater of snow and ice
- failure of a protection structure

Time scale: few hours maximum

www.pinterest.com

Sediment Transport

Sediment Migration

Sediment is the sand, mud, and pebbles that were once solid rock.

Sediment flows in tributary streams and river channels of the Skagit, from the Cascade Mountains to Skagit Bay and Puget Sound.

http://www.skagitclimatescience.org/skagit-impacts/sediment/

Sediment Transport

COMSOL Conference 2018 Lausanne

www.fondriest.com/environmental-measurements/parameters/hydrology/sediment-transport-deposition/

Reduced Dimension

3D phenomena are simplified to 2D (floods) or 1D (streams).

The 1D or 2D description

- is derived from the 3D equations for mass and momentum conservation
- Assumes that vertical length scale is much smaller than the horizontal scales
- is not valid in case of non-negligible vertical flux components
- is usually used for shallow waters

Depth-Averaged Flow

Shallow Water Equations

SWE

Saint-Venant Equations

Volume Conservation

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (H\mathbf{u}) = 0$$

Momentum Conservation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + g\nabla H - \mathbf{F} = 0$$

with with total water depth H, water height above reference height η , velocity vector \mathbf{u} , acceleration and due to gravity g and vector of outer forces \mathbf{F}

-

Extension

Hydraulics with friction on the walls

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + g \nabla H + g \eta n^2 \frac{|\mathbf{u}|}{\eta^{4/3}} \mathbf{u} - \mathbf{F} = 0$$

with Manning coefficient *n*

(Brufau & García-Navarro 2000, Duran 2015)

Implemented in COMSOL Multiphysics as physics mode by Schlegel (2012)

Solute Transport in Streams

Mechanisms of sediment transport (from McKnight and Hess, 2000)

Suspended (Particulate, Dissolved) Load

COMSOL Conference 2018 Lausanne

Transport equation (1D, 2D)

$$\frac{\partial c}{\partial t} - \nabla \left(\mathbf{D} \nabla c \right) + \left(\mathbf{u} \cdot \nabla \right) c - \frac{1}{H} \left(E - D \right) = 0$$

with dispersion tensor **D**, velocity **u**, source term *E* and sink term *D* (Cao *et al.* 2004, Li & Duffy 2011, Rowan & Seaid 2017)* In cases several different classes have to be taken into account *except for the dispersion term

Bedload

Transport equation (1D, 2D)

$$\frac{\partial d}{\partial t} - \frac{1}{1 - \theta} \left(E - D \right) = 0$$

with depth d below reference and porosity θ .

 ${\cal E}$ describes sedimentation of supended load, ${\cal D}$ the remobilization of bedload

(Cao et al. 2004, Li & Duffy 2011)

Closure 1

Sedimentation (Empirical formula)

$$D = \beta v_s c_s \left(1 - c_s\right)^m$$

with sedimentation parameter β , settling velocity v_s and exponent m. For particular load the settling velocity depends on grain size!

m = 0 (Cao *et al.* 2004, Li & Duffy 2011)

m = 1.4 (Rowan & Seaid 2017)

Closure 2

Re-suspension (Empirical formula)

$$E = \alpha \cdot \operatorname{sign}(\Theta - \Theta_{c}) H |\mathbf{u}|$$

$$\Theta = u_{*}^{2} / sg\delta$$

$$u_{*} = \sqrt{gh(S_{fx}^{2} + S_{fy}^{2})}$$

$$S_{fx} = nu_{x} |\mathbf{u}| / h^{4/3}$$

$$S_{fy} = nu_{y} |\mathbf{u}| / h^{4/3}$$

$$s = \rho_{s} / \rho_{f} - 1$$

with coefficient α and Shields parameters Θ and Θ_c , friction velocity u_* , friction slopes S_{fx} , S_{fy} , specific gravity s COMSOL Conference 2018 Lausanne

Multiphysics Coupling

COMSOL Flow past an Obstacle Conference 2018 Lausanne Obstacle origin

Initial condition:

high water level upstream (left), low water level downstream (right) at simulation time zero the dam disappears

Parameter Set

Parameter, Symbol	Value, Unit	Parameter, Symbol	Value, Unit
Length	1 m	Initial particulate load	0
Width	1 m	Settling velocity v _s	0.01 m/s
Obstacle radius	0.1 m	Particle diffusivity	$10^{-9} \mathrm{m^2/s}$
Initial bed below	0.5 m	Turbulent viscosity <i>v</i>	0.0025 m ² /s
reference			
Initial water table	0.5 m	Turbulent Schmidt	0.71
above reference		number Sc	
Inflow water table	1 m	Critical Shields	0.4
above reference		parameter Θ_c	
Velocity at outlet	1 m/s	Particle diameter δ	0.0001 m
Manning parameter	0.03 s/m ^{1/3}	Re-suspension	5 10-4
n		parameter <i>α</i>	
Froude number	0.26	Specific gravity ρ_s/ρ_f	2.65

COMSOL Model

- Model set-up: There is a no-flow no-slip condition along walls. The Manning friction coefficient is n = 0.01.
- Elements: 2. order
- Stabilization: consistent
- The Finite Element mesh is refined at the obstacle boundaries. Constructing the mesh a maximum element side length of only 0.01 m at the upstream side, and of 0.005 m at the downstream side was allowed. The resulting mesh, consists of 2476 elements. The discretization of the entire system of coupled differential equations has 10468 degrees of freedom

Results 1

t = 0.1 s

t = 0.3 s

COMSOL Conference 2018 Lausanne

Results 2

t = 0.5 s

t = 0.9 s

COMSOL

Lausanne

Conference 2018

Water table and bottom changes at selected locations

Comparison with reality

Depression and sedimentation around obstacle, view upstream in Wadi Abyad, Oman

Arrow indicates flow direction in case of flooding

Summary & Conclusions

- The reduced dimension approach, described by the SWE, is extended to account for transport of suspended load and bedload.
- The multiphysics coupling appears, when the water depth is changing due to net bedload production or re-mobilization
- The test example of flow and sediment transport past an obstacle produces physically reasonable results

References

- Cao Z., Pender G. and Carling P., Computational dam-break hydraulics over erodible sediment bed, J. of Hydraulic Engineering, 2004
- Holzbecher E. and Hadidi A., Coupled Flow and Sediment Transport in Shallow Water, 4th Int. Symp. on Flash Floods in Wadi Systems (ISFF4), Casablanca, 2018
- Li S. and Duffy C.J., Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers, Water Resources Research, Vol. 47, W03508, 2011
- Rowinski P.M. and Kalinowska M.B., Admissible and unadmissible simplifications of pollution transport equations, in: Ferreira R., Alves E., Leal J., Cardoso A. (eds), *River Flow 2006*, CRC Press, Boka Raton, 199-208, 2006
- Schlegel F., Shallow water physics (shweq), COMSOL internal paper, 2012

Acknowledgements

COMSOL Conference 2018 Lausanne

TRC

مجلس البحث العلمي The Research Council

COMSOL Multiphysics

ICOMSOL

German Univ. of Technology in Oman

Outlook

COMSOL

Lausanne

Conference 2018

ISFF4

December 4-6, 2018

Casablanca, Morocco