DE LA RECHERCHE À L'INDUSTRIE

Simulation of an aerodynamic furnace for high temperature data acquisition using Comsol® Multiphysics

www.cea.fr

J.M. Borgard, L. Soldi, A. Quaini, E Lizon, T. Alpettaz, DANS/DEN/DPCSCCME/LM2T Email : jean-marc.borgard@cea.fr

LEVITATION METHODS

Method	samples	heating	Typical size (mm)	Main limitations
Acoustic	Any	Laser	0,5-3	Limited temperature
Aerodynamic	Any	Laser	0,7-3	Gas footprint ?
Electrostatic	Any	Laser	1-4	Require stable electrical charge on sample
Electromagnetic	Conductor	RF/laser	2-10	conductors
Optical	Non reflective	Laser	0,0001	Very small samples
Gas film	Any	Radiative	Up to 30	Limited temperature

C22 ATTILHA EXPERIMENTAL SETUP

Temperature **A**dvanced and Thermodynamic Investigation by Laser Heating Approach

Spherical sample heated by laser up to 3200 K.

Pyrometer for temperature

Camera for position Infrared and volume

Oscillations :

- Surface Tension
- Viscosity
- Laser cut off :
 - function Density as of • temperature
 - **Specific Heat Capacity**

Aerodynamic levitation : access to undercooled liquids – very large temperature range

EVALUATION OF LIQUID ALUMINA DENSITY AS A FUNCTION OF TEMPERATURE –QUICK REVIEW

Apparent **Chemical contamination** for container based technics (pendant drop, archimedian, pressure bubble) Similar **trends** for containerless (levitation) technics (ESL and ADL)

But **ADL** give **lower values** at fusion point, dependent of sample size and levitation gas type !

SIDE VIEW OF MOLTEN OXIDES LEVITATION AND TYPICAL NOOZLES*

Density currently evaluated assuming **spherical shape**

*: C.J. Benmore and Weber aerodynamic levitation , supercooled liquid and glass formation, advances in physics X, 2:3 737-736.

Is the liquid levitated sample really spheric?

Lets have a look using

Comsol® Multiphysics

COMPUTATIONAL METHODOLOGY 1/2

Challenges :

- Temperature gradient (1000 K / 10 µm) close to LG interface
- Sample position in noozle: major impact on gas flow
- Strong Marangoni effect due to temperature gradient (200K) inside sample before laser cut-off

<u>Software :</u>

Heat + Microfluidic Comsol® modules + moving mesh ALE

(first order Winslow smoothing for LG interface temporal evolution)

COMPUTATIONAL METHODOLOGY 2/2

Convergence strategy :

Preliminary thermomechanical solution : **Undeformable** spherical sample – **no gravity** – **ramping** viscosity

Controlled temporal iteration until stationary solution :

Balance internal and external forces at LG interface

 $\delta T = 1 e - 08 s \Delta T = 1.e - 04 s$

Vertical stabilization of sample

 $\delta T = 1 e-05 s \Delta T = 1.e-02 s$

Convergence of internal liquid flow $\delta T = 0,001 \text{ s} \quad \Delta T = 2 \text{ s}$

FLUID VELOCITY RESULTS

IS THE SAMPLE SPHERICAL ? COMSOL ANSWER:

The **TOP** of the sample remains **spherical** The **BOTTOM** get more and more deformed as its size increases

VOLUME ESTIMATION AFTER LASER CUT-OFF FOR VARIOUS LEVITATION GAS

- S : assuming spherical approximation
- C : volume calculated by Comsol

DENSITY ESTIMATION WITH CORRECTED VOLUME

Levitation technics give now similar results. Difference at fusion probably due to recalescence of the sample

CONCLUSION :

Using Comsol® multiphysics it seems possible to adjust the **density evaluation** of aerodynamic levitation

On going work on other thermodynamical data :

- heat capacity
- viscosity
- surface tension

Thank you for your attention !

Questions and comments are welcome !

CURRENT HEAT CAPACITY AND TEMPERATURE EVALUATION HYPOTHESIS

Main hypothesis (similar to other levitation technics) only radiative decay after laser cut-off:

$$\frac{\mathrm{d}Q_R}{\mathrm{d}t} = \varepsilon k_B S (T^4 - T_0^4) \cong \varepsilon k_B S T^4 \qquad (1)$$

Energy balance on sample

SL1

$$mC_p \mathrm{d}T + \mathrm{d}Q_R = 0 \tag{2}$$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{\varepsilon k_B S T^4}{m C_p}$$

$$\frac{C_p}{\varepsilon} = -\frac{k_B S d(\frac{1}{T^3})/dt}{m}$$

- Q_R radiative heat
- t time
- ε hemispherical total emissivity
- k_B Stefan Boltzmann constant
- S surface
- T sample temperature
- T₀ ambient temperature
- m sample mass
- C_p specific heat capacity

SL1 SOLDI Luca; 16.02.2017

INFLUENCE OF LEVITATION GAS ON TEMPERATURE DECAY

Decay is not purely radiative and depends on gas conductivity

THERMODYNAMIC DATA AT DIFFERENT TEMPERATURES

T=300 K	Air	Xenon	Oxygen	Argon	Helium
Conductivity (W/mK)	0,026	0,0055	0,026	0,018	0,152
Viscosity (10 ⁻⁵ Pas)	1,82	2,2	1,95	2,1	0,88

T=3000 K	Air	Oxygen	Argon
Conductivity (W/mK) (e)	0,383	0,802	0,09
Viscosity (10 ⁻⁵ Pas) (e)	8,58	9,49	10

<u>Hypothesis : air /oxygen at thermal equilibrium</u>

Temperature get homogeneised in a few ms