Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media Using COMSOL®

> Bikash Ghose¹^{*}, Krishnan Balasubramaniam²[#] C V Krishnamurthy³, A Subhananda Rao¹

¹ High Energy Materials Research Laboratory, Sutarwadi, Pune - 21
 ² Center for Non Destructive Evaluation, IIT Madras, Chennai - 36
 ³ Department of Physics, IIT Madras, Chennai -36

E-mail: * ghose.bikash@hemrl.drdo.in , # balas@iitm.ac.in

Motivation

- Application of Ultrasonic wave propagation
 - Under Water Acoustics
 - Medical Diagnostic
 - Structural Health Monitoring (SHM)
 - Non-Destructive Evaluation (NDE)
 - Material Characterization
- Non-Destructive Evaluation
 - Bulk wave
 - Longitudinal wave (Pulse echo technique, Through transmission etc)
 - Transverse Wave
 - Surface Wave
 - Guided Wave / Lamb Wave etc.
- Guided Wave
 - Many different modes of ultrasonic vibration (Symmetric, Anti symmetric)
- Numerical Simulation of Wave propagation
 - Fluid (Only Longitudinal wave)
 - Solid (Longitudinal, Transverse, Surface, Lamb etc)
- Use of COMSOL for simulation of wave propagation in solids

Transient Analysis for Wave Propagation

- Transient Analysis always pose difficult problems
- Length of element (Δx)
- Time steps (∆t)
- Type of Elements (Triangular, Quad)
- Integration scheme for integration over time
- Issues
 - Instability
 - Numerical Dispersion
 - Convergence

Numerical Simulation of Ultrasonic Wave Propagation using COMSOL®

Materials & Ultrasonic Wave Properties

- Young's Modulus (E) = 2×10^{11} Pa
- Poisson's ratio (v) = 0.33
- Density (ρ) = 7850 kg/m3
- Ultrasonic velocity (C_L) (longitudinal wave) = 5850 m/s
- Frequency of incident ultrasonic wave (f)
 = 20 kHz = 20×10³ s⁻¹
- Wavelength of the longitudinal ultrasonic wave $(\lambda_L) = C_L/f = 0.2925$ m
- Source Length : 0.04 m (40 mm) (located at the middle)
- Source Excitation : On a line and points on line
- Simulation Domain : 5.0 m (L) x 2.5 m (H)

Meshing and Application Modes

- Triangular Elements
- Elements Automatically Generated
- Approximation : Plane Stain
- Element Type : Lagrange Quadratic
- Analysis : Transient
- Solver : Time Dependent

Effect of Length of Element (Δx)

Ratio of	Maximum
Wavelength to	element size
$\Delta x_{max} \left(\lambda_L / \Delta x_{max} \right)$	$(\Delta x_{max}) (m)$
2	0.1462
3	0.0975
4	0.0731
5	0.0585
8	0.0366
9	0.0325
12	0.0244
16	0.0182

As per CFL Criteria

$$\Delta t_{critical} = \frac{\Delta x_{\max}}{C_{ph}} = \frac{\Delta x_{\max}}{C_L} = \frac{0.0182m}{5850m/s} = 3.1 \times 10^{-6} s$$

The time steps chosen initially for simulation for different Δx_{max} is 2.5×10⁻⁶ s

Onward Propagating Wave at various Distances for Different $\lambda_L / \Delta x_{max}$ at t = 4×10⁻⁴ s

- Oscillations remains after passing by of signal
- Convergence of the solution for the ratio $(\lambda_L / \Delta x_{max}) \ge 8$
- Time steps are taken from solver or exactly what has been given does not make any difference to the propagating signal

Onward Propagating Wave for Different $\lambda_L/\Delta x_{max}$ at t = 4×10⁻⁴ s

Line profile (Displacement Vs Distance from source) at 0.0004s for different wavelength to element length ratio

Effect of Time Steps (Δt)

• As per CFL criteria the time steps should be less than $\Delta x/C_L$ for example, for the maximum element length of $\lambda_L / 10$ the time steps should be $\leq (\lambda_L / 10 \times C_L)$ that means if

$$\Delta x_{\max} = \frac{\lambda_L}{10}$$
$$\Rightarrow \Delta t \le \frac{\Delta x_{\max}}{C_L} = \frac{\lambda_L}{10 \times C_L}$$
$$\Rightarrow \Delta t \le \frac{1}{10 \times f}$$

- Signal so far obtained is not as expected
- Major change in the shape of signal
- Time steps further decreased and solution was checked for convergence

$\Delta t = 10 \times 10^{-6} s$

$\Delta t = 5 \times 10^{-6} s$

y-displacement [m]

$\Delta t = 2.0 \times 10^{-6} s$

$\Delta t = 1.0 \times 10^{-6} s$

0.8 10

0.6

0.4

0.2

8-02

-0.4

-0.6

-0.8

0.1 0.2 0.3 0.4

0.5 0.6

Time

0.7 0.8 0.9

1 1.1

0.6 0.7 8.0 0.9 1

$\Delta t = 0.2 \times 10^{-6} s$

$\Delta t = 6.26 \times 10^{-6} s$

$\Delta t = 5 \times 10^{-6} s$

$\Delta t = 2.0 \times 10^{-6} s$

y-displacement [m]

$\Delta t = 1.0 \times 10^{-6} s$

$\Delta t = 0.5 \times 10^{-6} s$

0.4

0.2

1.0.2

-0.4

-0.6

-0.8

-1 ~

0.1 0.2 0.3 0.4

y-displacement [m]

Time

0.5 0.6 0.7 0.8 0.9 1

1.1

0.8 0.9 1 1.1

0.1

0.2 0,3 0,4 0.5 0.6 0.7

$\Delta t = 5 \times 10^{-6} s$

$\Delta t = 1.0 \times 10^{-6} s$

 $\Delta t = 0.5 \times 10^{-6} s$

Effect of Excitation on Line and Points on Line for $\lambda_L/\Delta x_{max} = 8$ and $\Delta t = 2.5 \times 10^{-6}$ s

(Line source) At 1.0 m

At 0.5 m

(Points on Line source)

At 0.5 m

Effect of Excitation on Line and Points on Line for $\lambda_L/\Delta x_{max}$ = 8 and Δt = 2.5x10⁻⁶ s

Line profile at $t = 4 \times 10^{-4} \text{ s}$

Time and Frequency Domain Signal for Forward Propagating Wave

All signals are for $\Delta t = 0.5 \times 10^{-6} \text{ s}$

Time and Frequency Domain Signal for Back Wall Reflected Wave

All signals are for $\Delta t = 0.5 \times 10^{-6} \text{ s}$

Simulation Results for $\lambda_L/\Delta x_{max} = 8$ $\Delta t = 0.5 \times 10^{-6} \text{ s at different time}$

Simulation Results for $\lambda_L / \Delta x_{max} = 8$ $\Delta t = 0.5 \times 10^{-6}$ s at different time

Simulation Results for $\lambda_L/\Delta x_{max} = 8$ $\Delta t = 0.5 \times 10^{-6}$ s at different time

Simulation Results for $\lambda_L/\Delta x_{max} = 8$ $\Delta t = 0.5 \times 10^{-6}$ s at different time

Conclusions

- Wave Propagation can well be modeled using COMSOL with excitation on line segment and / or on points on line (Difference only in the maximum displacements)
- $\lambda_L / \Delta x_{max} \ge 8$ irrespective of any time steps less than calculated by CFL criteria (For triangular free meshing)
- Time step Δt should be about T/100 even if $\lambda_L / \Delta x \approx 16$
- No substantial difference in frequency content of forward as well as back wall reflected ultrasonic signal observed

