Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media Using COMSOL®

Bikash Ghose ${ }^{1 *}$, Krishnan Balasubramaniam² \# C V Krishnamurthy ${ }^{3}$, A Subhananda Rao ${ }^{1}$
${ }^{1}$ High Energy Materials Research Laboratory, Sutarwadi, Pune - 21
${ }^{2}$ Center for Non Destructive Evaluation, IIT Madras, Chennai- 36 ${ }^{3}$ Department of Physics, IIT Madras, Chennai -36

E-mail: * ghose.bikash@hemrl.drdo.in , \# balas@iitm.ac.in

Motivation

- Application of Ultrasonic wave propagation
- Under Water Acoustics
- Medical Diagnostic
- Structural Health Monitoring (SHM)
- Non-Destructive Evaluation (NDE)
- Material Characterization
- Non-Destructive Evaluation
- Bulk wave
- Longitudinal wave (Pulse echo technique, Through transmission etc)
- Transverse Wave
- Surface Wave
- Guided Wave / Lamb Wave etc.
- Guided Wave
- Many different modes of ultrasonic vibration (Symmetric, Anti symmetric)
- Numerical Simulation of Wave propagation
- Fluid (Only Longitudinal wave)
- Solid (Longitudinal, Transverse, Surface, Lamb etc)
- Use of COMSOL for simulation of wave propagation in solids

Transient Analysis for Wave Propagation

- Transient Analysis always pose difficult problems
- Length of element (Δx)
- Time steps ($\Delta \mathrm{t}$)
- Type of Elements (Triangular, Quad)
- Integration scheme for integration over time
- Issues
- Instability
- Numerical Dispersion
- Convergence

Numerical Simulation of Ulitrasonic Wave Propagation using COMSOL®

Initial Displacement

Solution at $7.0 \times 10^{-5} \mathrm{~s}$

Thumb Rule?
-Length of Element $(\Delta x)=\lambda / 12$
-Time Step $=\Delta x / C_{p h}$

Displacement at diff positions with time

Solution at $1.7 \times 10^{-4} \mathrm{~s}$

Materials \& Ultrasonic Wave Properties

- Young's Modulus (E) $=2 \times 10^{11} \mathrm{~Pa}$
- Poisson's ratio (v) $=0.33$
- Density $(\rho)=7850 \mathrm{~kg} / \mathrm{m} 3$
- Ultrasonic velocity (CL) (longitudinal wave) $=5850 \mathrm{~m} / \mathrm{s}$
- Frequency of incident ultrasonic wave (f) $=20 \mathrm{kHz}=20 \times 10^{3} \mathrm{~s}^{-1}$
- Wavelength of the longitudinal ultrasonic wave $\left(\lambda_{L}\right)=C_{L} / f=0.2925 \mathrm{~m}$
- Source Length : 0.04 m (40 mm) (located at the middle)
- Source Excitation : On a line and points on line
. Simulation Domain : $5.0 \mathrm{~m}(\mathrm{~L}) \times 2.5 \mathrm{~m}$
 (H)

Meshing and Application Modes

- Triangular Elements
- Elements Automatically Generated
- Approximation : Plane Stain
- Element Type : Lagrange Quadratic
- Analysis : Transient

- Solver : Time Dependent

Effect of Length of Element ($\Delta \mathrm{x}$)

Ratio of Wavelength to $\Delta \mathrm{x}_{\max }\left(\lambda_{\mathrm{L}} / \Delta \mathrm{x}_{\max }\right)$	Maximum element size $\left(\Delta \mathrm{x}_{\max }\right)(\mathrm{m})$
2	0.1462
3	0.0975
4	0.0731
5	0.0585
8	0.0366
9	0.0325
12	0.0244
16	0.0182

As per CFL Criteria

$$
\Delta t_{\text {critical }}=\frac{\Delta x_{\max }}{C_{p h}}=\frac{\Delta x_{\max }}{C_{L}}=\frac{0.0182 \mathrm{~m}}{5850 \mathrm{~m} / \mathrm{s}}=3.1 \times 10^{-6} \mathrm{~s}
$$

The time steps chosen initially for simulation for different $\Delta x_{\max }$ is $2.5 \times 10^{-6} \mathrm{~s}$

Onward Propagating Wave at various

 Distances for Different $\lambda_{L} / \Delta x_{\text {max }}$ at $t=4 \times 10^{-4} \mathrm{~s}$

Time (s)

- Oscillations remains after passing by of signal
- Convergence of the solution for the ratio $\left(\lambda_{L} / \Delta x_{\max }\right) \geq 8$
- Time steps are taken from solver or exactly what has been given does not make any difference to the propagating signal

Onward Propagating Wave for Different $\lambda_{\mathrm{L}} / \Delta \mathrm{X}_{\max }$ at $\mathrm{t}=4 \times 10^{-4} \mathrm{~s}$

Line profile (Displacement Vs Distance from source) at 0.0004 s for different wavelength to element length ratio

Effect of Time Steps (Δt)

- As per CFL criteria the time steps should be less than $\Delta x / C_{L}$ for example, for the maximum element length of $\lambda_{L} / 10$ the time steps should be $\leq\left(\lambda_{L} / 10 \times C_{L}\right)$ that means if

$$
\begin{aligned}
& \Delta x_{\max }=\frac{\lambda_{L}}{10} \\
& \Rightarrow \Delta t \leq \frac{\Delta x_{\max }}{C_{L}}=\frac{\lambda_{L}}{10 \times C_{L}} \\
& \Rightarrow \Delta t \leq \frac{1}{10 \times f}
\end{aligned}
$$

- Signal so far obtained is not as expected
- Major change in the shape of signal
- Time steps further decreased and solution was checked for convergence

Case: I $\quad \lambda_{\mathrm{L}} / \Delta \mathrm{X}_{\max }=5$

Case: II $\quad \lambda_{L} / \Delta x_{\max }=8$

Case: III
$\Delta t=5 \times 10^{-6} s$

$\Delta t=1.0 \times 10^{-6} s$

$\lambda_{L} / \Delta x_{\max }=12$
$\Delta t=2.5 \times 10^{-6} s$

$\Delta t=0.5 \times 10^{-6} s$

Effect of Excitation on Line and Points on Line for $\lambda_{L} / \Delta x_{\max }=8$ and $\Delta t=2.5 \times 10^{-6} \mathrm{~s}$
(Line source)
At 1.0 m

At 0.5 m

(Points on Line source)
At 1.0 m

At 0.5 m

Effect of Excitation on Line and Points on Line for $\lambda_{L} / \Delta x_{\max }=8$ and $\Delta t=2.5 \times 10^{-6} \mathrm{~s}$

Line profile at $\mathrm{t}=4 \times 10^{-4} \mathrm{~s}$

(Line source)
(Points on Line source)

Time and Frequency Domain Signal for Forward Propagating Wave

$$
\frac{\lambda_{L}}{\Delta x_{\max }}=12
$$

Time (s)
$\frac{\lambda_{L}}{\Delta x_{\max }}=8$
$\frac{\lambda_{L}}{\Delta x_{\max }}=5$

Time (s)

Single-Sided Amplitude Spectrum

All signals are for $\Delta t=0.5 \times 10^{-6} \mathrm{~s}$

Time and Frequency Domain Signal for Back Wall Reflected Wave

$\frac{\lambda_{L}}{\Delta x_{\text {max }}}=8$

All signals are for $\Delta t=0.5 \times 10^{-6} \mathrm{~s}$

Simulation Results for $\lambda_{L} / \Delta x_{\max }=8$ $\Delta t=0.5 \times 10^{-6} \mathrm{~s}$ at different time

Simulation Results for $\lambda_{\perp} / \Delta x_{\max }=8$

 $\Delta t=0.5 \times 10^{-6} \mathrm{~s}$ at different time

Simulation Results for $\lambda_{L} / \Delta x_{\max }=8$

 $\Delta t=0.5 \times 10^{-6} \mathrm{~s}$ at different time

Simulation Results for $\lambda_{L} / \Delta x_{\max }=8$

 $\Delta t=0.5 \times 10^{-6} \mathrm{~s}$ at different time

Conclusions

- Wave Propagation can well be modeled using COMSOL with excitation on line segment and / or on points on line (Difference only in the maximum displacements)
- $\lambda_{\mathbb{L}} / \Delta x_{\text {max }} \geq 8$ irrespective of any time steps less than calculated by CFL criteria (For triangular free meshing)
- Time step Δt should be about T/100 even if $\lambda_{L} / \Delta x$ ≈ 16
- No substantial difference in frequency content of forward as well as back wall reflected ultrasonic signal observed

E-mail: ghose.bikash@hemrl.drdo.in , balas@iitm.ac.in

