Introduction	Optical Fibres	Components	Material Engineering

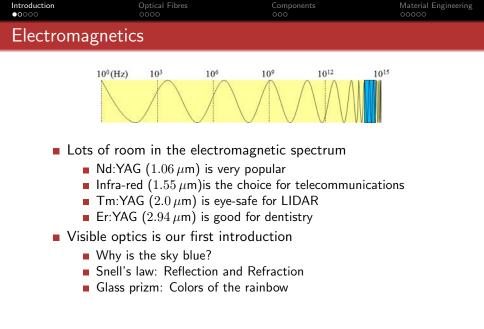
Presented at the COMSOL Conference 2010 India

Engineering Light Photonics, Plasmonics and Meta-materials

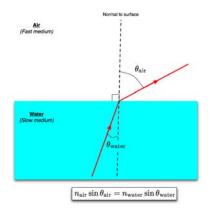
Anil Prabhakar

Experimental Optics Group Dept. of Elec. Engg., IIT-Madras

October 30, 2010


Introduction	Optical Fibres	Components	Material Engineering
00000	0000	000	00000
At IIT-Madras			

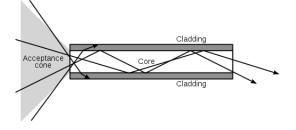
Capabilities


- Optoelectronics (pulsed current drivers, detection systems)
- Telecommunications Fibre optics
- Metrology instruments, sensors, lasers

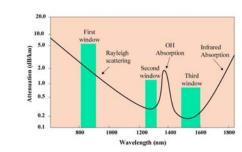
People

- 8 faculty in EE, 13 in IIT-M
- 15+ students
- 15+ project staff
- Active collaborations in lots and lots of projects

Introduction	Optical Fibres	Components	Material Engineering
○●○○○	0000	000	00000
Refraction			



Total internal reflection in a swimming pool


- Light bends when it goes from one medium to another
- Snell's law relates angles of incidence and transmission
- Critical angle beyond which we have total internal reflection

Introduction 00000	Optical Fibres 0000	Components 000	Material Engineering 00000
Fibre Optics			

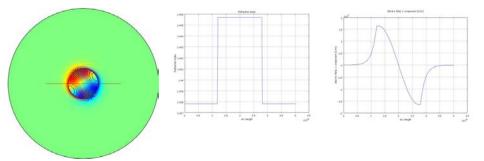
- High refractive index core
- Low refractive index cladding
- Light is guided along by total internal reflection
- Cone angle of acceptance to couple light into the fibre
 - Apply Snell's law at the input air-core interface
 - Require incidence at critical angle at core-clad interface

Introduction	Optical Fibres	Components	Material Engineering
00000	0000	000	00000
Telecommi	inications		

- Rayleigh scattering causes attenuation (loss)
 - Why is the sky blue, but red at sunrise or sunset?
- Pure silica has low loss in the infra-red
- Kao shares the Physics Nobel Prize in 2009

 Introduction
 Optical Fibres

 ○○○○●
 ○○○○


Components

Material Engineering

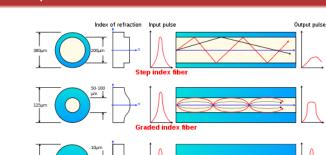
Fibre Deployment

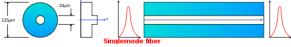
Introduction 00000	Optical Fibres	Components 000	Material Engineering
Cross-section of	of an optical fibre		

- Comsol model library step index fibre
- \blacksquare Aspect ratio 100 $\mu {\rm m}$ versus 100 km
- Idealized system invariant along the length of the fibre

Introduction 00000	Optical Fil	ores	Compon 000		Material Engineering 00000
Propagatior	n modes				
	l = 0, m = 1	l = 1, m = 1	l = 2, m = 1	l = 0, m = 2	
			\mathbf{X}		
	l = 3, m = 1	l = 1, m = 2	l = 4, m = 1	l = 2, m = 2	
		(0)		\mathbf{x}	

l = 3, m = 2


l = 1, m = 3


Think now of the surface of a drum - transverse modesOptical intensity in a multi-mode fibre is not uniform

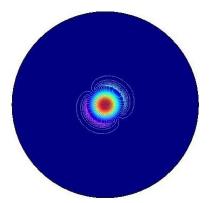
l = 5, m = 1

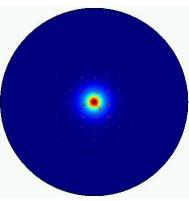
l = 0, m = 3

Introduction	Optical Fibres	Components	Material Engineering
00000		000	00000
Types of Option	al Fibres		

- Different modes travel different distances (ray diagram)
- Telecommunication uses single mode fibres
- Multimode fibres used in imaging have dispersion

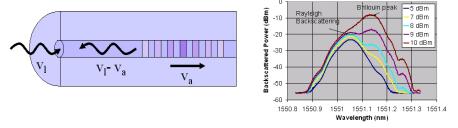
Images: wikipedia

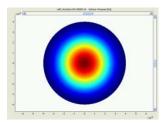

Introd	

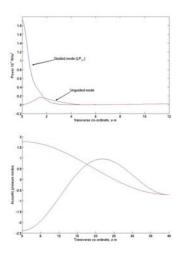

Optical Fibres

Components

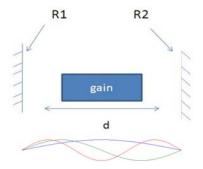
Material Engineering

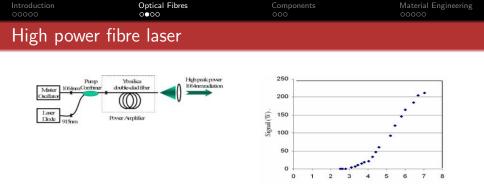

Eigenmode Analysis


- Graded index: $n_1 = 1.455 + 0.005e^{-(r/5)^{12}}$
- Annular index:
 - $n = n_1 + .002 \tanh[10(r-6)] \tanh[10(r-8)]$
- Retain the basic optical mode shape



- Energy transferred from photons to phonons
- Doppler effect: Reflected power is shifted to a lower frequency
- Want to minimize acoustic waves ... multiphysics modelling


Acoustic M	ode		
Introduction	Optical Fibres	Components	Material Engineering
00000		000	00000


- Acoustic modes also depend on refractive index
- Optimize n(r) to minimize coupling between photons and phonons.

Laser cavity			
Introduction	Optical Fibres	Components	Material Engineering
00000	●000	000	00000

- Gain medium between two reflecting surfaces
- Longitudinal modes in the cavity

- 10's of watts of continuous power, kW's of pulsed power
- Fibre lasers to replace Nd-YAG lasers in all industrial/defense applications.

Introduction	Optical Fibres	Components	Material Engineering
00000	00●0	000	00000
Double Clad F	ibres		

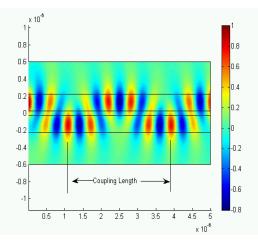
Why are fibre lasers efficient?

- Take the glass rod and stretch it
- Same volume of gain medium, more surface area
- Pump it from the side, along the fibre length
- No dust particles.
- Beam quality is very good.

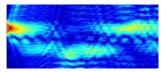
Notice that the core is not at the centre

Optical Fibres 000● Component

Material Engineering

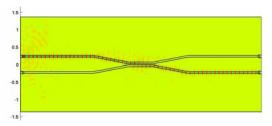

Modes in Double Clad Fibres

36 3.9

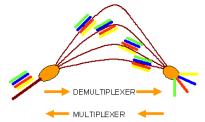

Off-centre core allows better pumping of the gain medium

Kouznetsov, D.; Moloney, J.V. (JOSA B, 2003)

Introduction	Optical Fibres	Components	Material Engineering
00000	0000	●00	
Coupled Mo	ode Theory		

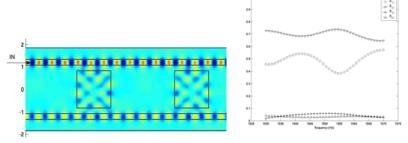


- Tail of the wave in one waveguide leaks into another
- Degenerate waveguides
 A(z) = cos(κz)
 B(z) = -j sin(κz)
- Vary device length to get desired power transfer

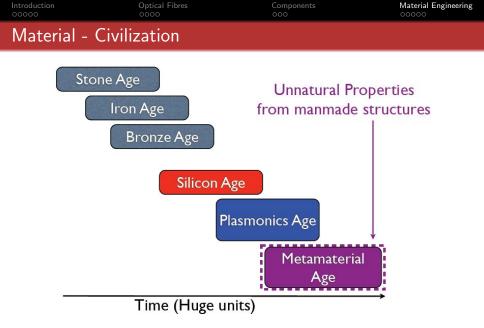


Non-reflecting (NR) boundaries allow us to solve a smaller problem.

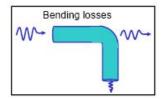
Introduction	Optical Fibres	Components	Material Engineering
00000	0000	o●o	00000
Directional Cou	ıpler		



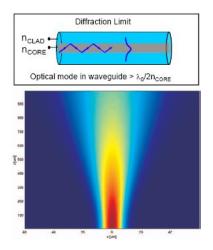
Imagine routing different wavelengths to different cities!!



S parameter analysis

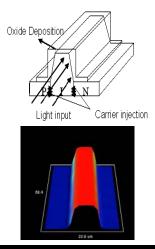


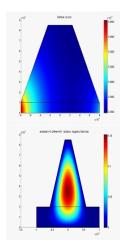
- Resonant structures improve efficiency.
- Transmission characteristics depend on frequency.
- Needs less than $1 \,\mu m$ lithography.



Introduction Optical Fibres Components Material Engineering 0000 000

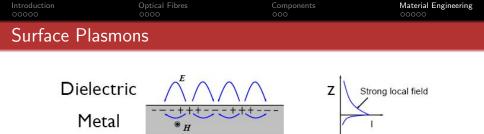
Problems with dielectric materials



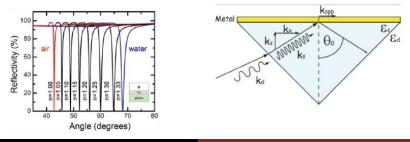

- High speed, high bandwidth
- Do not integrate well with Silicon

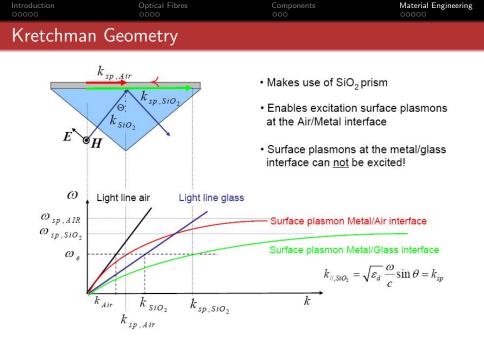
Introduction	Optical Fibres	Components	Material Engineering		
00000	0000	000			
Silicon Optics - Multiphysics					

- Corporate champion Intel
- Variable optical attenuators and phase modulators

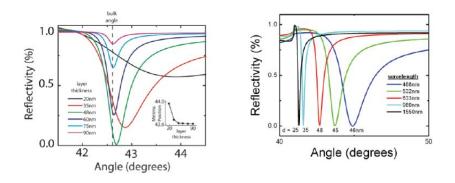


 Minimum ridge height for electronic control

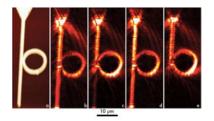

 Maximum ridge height for optical confinement

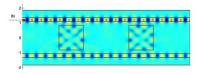

Anil Prabhakar

Engineering Light



- Electron charge distribution at the metal-dielectric interface
- Strongly localized electric field


Introduction	Optical Fibres	Components	Material Engineering
00000	0000	000	
Metal thickn	ess		


- What should the angle of incidence be?
- What should the thickness of the metal be?
- What should the wavelength of excitation be?

00000	0000	Components 000	00000
Resonators			

Plasmon resonantor

Dielectric resonator

- Dielectric resonators for telecommunications
- Plasmonic resonators make good sensors

Optical Fibres

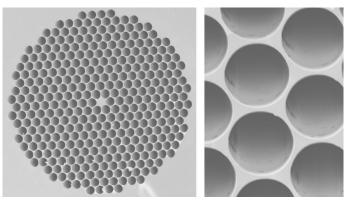
Components

Material Engineering •0000

Photonic Crystals

Opal is a naturally occuring crystal with a periodic microstructure

Image: wikipedia

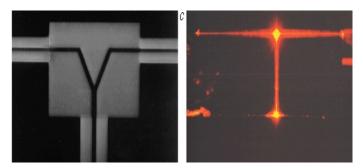

- New generation of synthetic materials
- Lossless bending of light
- Possibility of new devices

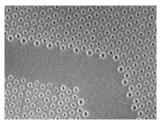
Optical Fibre

Components

Material Engineering 0●000

Photonic Crystal Fibre


- Produced at Naval Research Labs, USA.
- Diameter of core is $5 \,\mu$ m, holes is $4 \,\mu$ m.
- Fibre drawing facility at CGCRI, Kolkata.


Optical Fibres

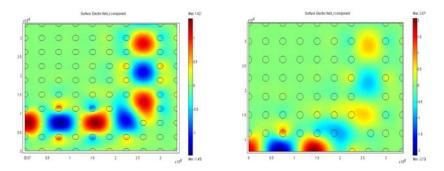
Components

Material Engineering

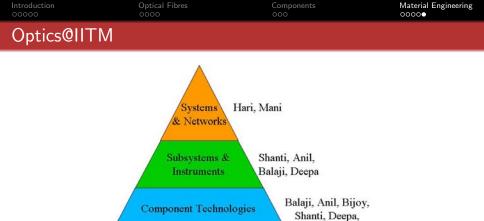
Photonic Splitter

Advantages

- Lossless bends
- Low insertion loss


Modeling can be a challenge (fill-ratio)

Anil Prabhakar


Introduction	Optical Fibres	Components	Material Engineering
00000	0000	000	000●0
Photonics with	Comsol		

3dB Splitter

Model Library

- Move a few pillars
- Use symmetric boundary conditions at the bottom

Foundations:

- Continuous stream of students and staff.
- M.Tech in Photonics starting July 2011.

Ananth