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Ferrofluids 

 Ferrofluids 
 Nanosized particles in 

carrier liquid 
(diameter~10nm) 

 Super-paramagnetic, single 
domain particles 

 Coated with a surfactant 
(~2nm) to prevent 
agglomeration 

 Applications 
 Hermetic seals (hard 

drives) 
 Magnetic hyperthermia for 

cancer treatment  
Magnetoviscous effects in ferrofluids – S. Odenbach 3 
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Background to Spin-up Flows 

Surface Driven Flows 
Spin Diffusion Theory 
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Ferrofluid Spin-up Experiment 

 
 First reported by 

Moskowitz and 
Rosensweig in 1967 

 Ferrofluid surface is 
opaque so observations 
were made at the free 
surface only 

 Flow reversal on top free 
surface was deduced to be 
due to meniscus shape 

R. Moskowitz and R. E. Rosensweig, Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic  field, Applied Physics Letters 11 (1967), no. 10, 301-303. 
5 

R. E. Rosensweig, J. Popplewell, and R. J. Johnston, Magnetic fluid motion in rotating field, Journal of Magnetism and Magnetic Materials 85 (1990), 171-180. 

C. Rinaldi, "Continuum modeling of polarizable systems," Ph.D, Dept. of Chemical Engineering., Massachusetts Institute of Technology, Cambridge, MA, 2002. 



Bulk flow experiments 

A. Chaves, C. Rinaldi, S. Elborai, X. He, and M. Zahn, Bulk flow in ferrofluid in a uniform rotating magnetic field, Physical Review Letters 96 (2006), no. 19, 194501-4. 6 

(No free surface) 



Surface driven and Bulk driven flows 

 
 Bulk flow velocity 

profiles co-rotate with 
the field 

 If there is a free surface, 
there is counter-rotation 
at the surface (concave) 

 If there is no free 
surface there is co-
rotation near the 
surface 

 A. Chaves, C. Rinaldi, S. Elborai, X. He, and M. Zahn, Bulk flow in ferrofluid in a uniform rotating magnetic field, Physical Review Letters 96 (2006), no. 19, 194501-4. 7 

75 Hz 14.4mT 



Non-uniform eddies 
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Eddies don’t cancel 
Wall 

Boundary condition on 
ω 



Spin-diffusion theory 

 Zaitsev and Shliomis state that microscopic eddies 
will result in macroscopic motion in the case of 
non-uniform internal rotations 

 Boundary condition on spin velocity ω creates flow  
 

 

 V. M. Zaitsev and M. I. Shliomis, Entrainment of ferromagnetic suspension by a rotating field, Journal of Applied Mechanics and Technical Physics 10 
(1969), no. 5, 696-700. 

ω 

ω0  

ω as a function of radius  

v 

‘Macroscopic’ velocity ‘v’ as 
a function of radius 
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• Extended Navier-Stokes Equation 
 
 
• Boundary condition on v,   

• Conservation of internal angular momentum 
 
 
 
• Boundary condition on ω unless η’=0, 

  ρ [kg/m3] is the ferrofluid mass density, p [N/m2] is the fluid pressure, ζ [Ns/m2] is the vortex viscosity, η [Ns/m2] is the dynamic 
shear viscosity, λ [Ns/m2] is the bulk viscosity, ω [s−1] is the spin velocity of the ferrofluid, v is the velocity of the ferrofluid, J [kg/m] is 
the moment of inertia density, η’ [Ns] is the shear coefficient of spin viscosity and λ’[Ns] is the bulk coefficient of spin viscosity, φ[%] 
is the magnetic particle volume fraction  

 

Spin-diffusion Governing Equations  
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Incompressible flow 
=0 

=0 

=0 

=0 

Neglecting Inertia 

Neglecting Inertia 
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Problems with Spin-diffusion theory 

 Theoretical determination of η’ [N-s] (≤1x10-18) is 
many orders of magnitude smaller1,2 than 
experimentally (≈10-8-10-12) fitted values3,4,5 
 
 

 
 Many authors as a result consider spin-diffusion 

effect to be negligible (η’≈0) 
   Shliomis6, and Pshenichnikov7 state that spin-up flow is a 
   result of non-uniformities in the rotating magnetic field or 

magnetic properties when η’≈0 
With η’≈0 in a perfectly uniform magnetic field there should 
be no flow 

6) M. I. Shliomis, T. P. Lyubimova, and D. V. Lyubimov,  Ferrohydrodynamics: An essay on the progress of ideas, 1988, pp. 275-290 
7) A. F. Pshenichnikov, A. V. Lebedev, and M. I. Shliomis, On the rotational effect in nonuniform magnetic fluids,  Magnetohydrodynamics 36 (2000), no. 4. 
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1) K. R. Schumacher, et al., "Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field," Physical Review E, vol. 
67, p. 026308, 2003. 

2) R.E. Rosensweig, Ferrohydrodynamics, Dover Publications, 1997. 
3) S. Elborai, "Ferrofluid surface and volume flows in uniform rotating magnetic fields," Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA, 

2006 
4) X. He, "Ferrohydrodynamic flows in uniform and non-uniform rotating magnetic fields," Ph.D thesis, Massachusetts Institute of Technology, Cambridge, 

MA, 2006. 
5) A. Chaves, C. Rinaldi, S. Elborai, X. He, and M. Zahn, Bulk flow in ferrofluid in a uniform rotating magnetic field, Physical Review Letters 96 (2006), no. 19, 194501-4. 



Uniform Rotating Fields Using a 

Spherical Coil Assembly 
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Motivation 

 
 To investigate spin-up flow as a result of applied 

uniform and non-uniform magnetic fields 
 A ferrofluid-filled sphere in an external uniform field will 

have equal demagnetizing fields in all directions resulting 
in a uniform internal field  

 Use of permanent magnet and current carrying coil to 
create non-uniform fields 

 The external uniform rotating field will be generated using 
two spherical coils known as ‘fluxballs’ 
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Fluxball 

 N turns of wire uniformly spaced in 
z 

 Surface Current Density 
 
 
 
 
 
 
 

 Solution to Laplace’s equation 
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H.A. Haus and J.R. Melcher, Electromagnetic Fields and Energy , 1989. 
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Rotating fields in 

Fluxball 

 

Orthogonally placed 
fluxballs 

 

Excited by sinusoidal 
signals out of phase by 
90O 

 

Generates a rotating 
magnetic field 

Clinton Lawler, A two-phase spherical electric machine for generating rotating uniform magnetic  fields, Master of Science, Massachusetts Institute of Technology, 2007 
15 



Fluxball setup 

Clinton Lawler, A two-phase spherical electric machine for generating rotating uniform magnetic  fields, Master of Science, Massachusetts Institute of Technology, 2007 
16 



Spin-up Flow Modeling (COMSOL 

Multiphysics η’ large and η’=0) 
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Modeling Ferrofluid Spin-up in cylinder 

 2D model assumes no 
variation in z (∞ long 
cylinder) 

 3 phase 2 pole with 
infinite μ stator 

 Current distribution ‘K’ 
generates a uniform 
rotating magnetic field  

 Boundary conditions 
 
 

 
Arlex Chaves, Markus Zahn, and Carlos Rinaldi, Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements, Phys. Fluids 20, 

053102 (2008). 
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RO

v rbg

  , , '
Ferrofluid

 z rbg
x

y

z

0 0) ( ) 0( R Rr r   ωv

EMG900_2 MSGW11 EFH1 

χ 1.19 0.56 1.59 

μ0Ms (G) 239 154 421 

η (Ns/m2) 0.0045 0.00202 0.00727 



Simulation of cylinder experiment by Chaves  

Arlex Chaves, Markus Zahn, and Carlos Rinaldi, Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements, Phys. Fluids 20, 053102 
(2008) 
K. R. Schumacher, et al., "Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field," Physical Review E, vol. 67, p. 
026308, 2003. 
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COMSOL Simulations with η’≠0 
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S. Elborai, "Ferrofluid surface and volume flows in uniform rotating magnetic fields," Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006. 
A. Chaves, et al., "Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements," vol. 20, p. 053102, 2008. 
X. He, "Ferrohydrodynamic flows in uniform and non-uniform rotating magnetic fields," Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA, 
2006. 



Simulations of spherical case with η’=0 
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Experiments in Uniform Rotating 

Magnetic Fields 

Ferrofluid Filled Sphere 
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Probe positions 

Channel 1 

Channel 2 

Channel 3 Channel 4 

2.5cm 

2.5cm 

250 200 

+900 clockwise field 
rotation 

Radius = 
5cm 
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Results with EFH1- no flow 
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With Magnetic Stir-bar 
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Experiments with Non-uniform 

Magnetic Fields  

Third Coil 
DC Magnet 
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Non-uniform magnetic field generation 
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 150 turn copper foil wound 
solenoidal coil  
 0.625” height,  2.61” diameter 
 Inductance 0.7mH 
 Resistance 0.26Ω 
 Can be excited with DC and AC 

current  (42.4 Gauss/IRMS ) 
 Max Field (296.8 Gauss AC, 339.2 

Gauss DC) 
 
 

 Permanent Magnets- 0.5’’ radius 
 Surface field strengths 

 1601G (1/8’’ height) 
 2952G (1/4’’ height) 
 3309G (1/4’’ height) 
 4667G (1/2’’ height) 
 5233G (1/2’’ height) 

 
 
 



Experimental Setup 
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Effect of Rotating Field Direction 
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Coil cases 
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Simulations of Flow with Non-uniform Magnetic 

Fields in Infinitely Long Cylinder and Magnet 
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2D Problem Setup 
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Magnetic nanoparticle in rotating magnetic 

field 
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 Ms [Amps/m] represents the saturation magnetization of the material, 
Md [Amps/m] is the domain magnetization (446kA/m for magnetite), Vh 
is the hydrodynamic volume of the particle,Vp is the magnetic core 
volume per particle, T is the absolute temperature in Kelvin, k = 1.38 × 
10−23 [J/K] is Boltzmann’s constant, f0 [1/s] is the characteristic 
frequency of the material and Ka is the anisotropy constant of the 
magnetic domains 

0
1• ( ) 0
efft 


      


v 

M
M M M M

0 0
0

1[coth( ) ], d p
s

H M V
a a

a kT


  M M

1 1 1

eff B N  
 

M. I. Shliomis, Effective viscosity of magnetic suspensions, Soviet Physics  JETP 34 (1972), 1291-1294. 
S. Elborai, "Ferrofluid surface and volume flows in uniform rotating magnetic fields," Ph.D thesis, Massachusetts Institute of Technology, 2006. 
P. J. Cantillon-Murphy, "On the dynamics of magnetic fluids in magnetic resonance imaging," Ph. D. thesis, Massachusetts Institute of Technology, 2008. 
. 
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Magnetic Relaxation Equation 

Langevin 
Equation 



4000 Gauss Magnet with MSGW11 – H field 
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Rotating field strength 100G 



4000 Gauss with MSGW11 - Magnetization 
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Rotating field strength 100G 



4000 Gauss with MSGW11 - flow 
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Dimensional 
velocity 
magnitude 
≈3-30mm/s 

Rotating field strength 100G 



2000 Gauss with MSGW11 – flow 

streamlines 
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Rotating field strength 100G 



Conclusions 
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Conclusions 
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 Simulations (spherical geometry) show flow exists when 
η’≠0 and no flow when η’=0 in uniform fields 

 Experiments give no flow in a uniform rotating field 
(ferrofluid filled sphere) 

 Experiments all confirm that flow exists in the presence of 
a non-uniform field  

 Simulations (cylindrical geometry) confirm flow exists in 
non-uniform field with η’=0 

 Flow profiles are very complicated with vortices with non-
uniform fields 

 Spin-diffusion theory is a negligible effect 
 Its effect has been overstated by using values of η’ that are 

many orders of magnitude higher than theoretically derived 
values 

 



Questions 
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