A Flexible Scheme for the Numerical Homogenisation in Linear Elasticity

TECHNISCHE UNIVERSITÄT DARMSTADT

A. Gerisch¹, S. Tiburtius¹, Q. Grimal², K. Raum³

¹Technische Universität Darmstadt, Fachbereich Mathematik, Germany ²Université Pierre et Marie Curie Paris VI, France ³Charité-Universitätsmedizin Berlin, Germany

This work was supported by the Deutsche Forschungsgemeinschaft within its priority program SPP1429 *Biomimetic Materials research: Functionality by Hierarchical Structuring of Materials* (grants GE1894/4 and Ra1380/7) and has been conducted within the framework of the European Associated Laboratory *Ultrasound Based Assessment of Bone* (ULAB).

Background and motivation

Bone-like materials

- are composed of simple constituents: collagen, mineral, water;
- are hierarchically structured across many length scales.
- → anisotropic materials displaying a great variety in mechanical function.

What is the importance of the hierarchical structure for mechanical function?

- Direct simulation across all length scales is not feasible.
- Homogenisation to "compress" information at fine scale.
- Use homogenised information at a coarser scale.

Experimental stiffness tensor

- ► Scanning Acoustic Microscopy (SAM) → acoustic impedance map Z(x) of bone cross section.
- Frequency of the acoustic beam determines scan resolution.
- > Z(x) strongly correlated with elastic stiffness coefficient in probing direction.
- \rightsquigarrow (with some additional assumptions): the elastic stiffness tensor C(x).

 \Leftarrow coarse resolution

fine resolution \Rightarrow

 \Leftarrow experimental homogenisation \Leftarrow

Details: [Raum, in: Bone Quantitative Ultrasound, Laugier & Haïat (Eds.), Springer, 2011]

Overview homogenisation

Numerical homogenization approach

PDE problem: equations of linear elasticity

Given:

- cuboid domain $\Omega \subset \mathbb{R}^3$, the representative volume element (RVE) and
- stiffness tensor C(x) for $x \in \Omega$.

Determine displacement field $u = (u_1, u_2, u_3) : \Omega \to \mathbb{R}^3$ from

$$-\partial_{j}(\underbrace{C_{ijkl}(x)\epsilon_{kl}(x)}_{\text{stress }\sigma(x)}) = 0, x \in \Omega, \text{ where } \underbrace{\epsilon(x)}_{\text{strain}} := \frac{1}{2} \left(\nabla u(x) + (\nabla u(x))^{\mathsf{T}} \right) \text{ (LE)}$$

subject to given boundary conditions (displacement, traction, periodic).

Comsol: Structural Mechanics Module, Solid stress-strain (static analysis).

Remark: for our application we only need zero volume forces in (LE).

Numerical homogenisation: RVE approach

[Zohdi & Wriggers, An Introduction to Computational Micromechanics, Springer, 2008]

- 1. Solve (LE) for six independent sets of boundary conditions (BCs) $\rightsquigarrow u^{(i)}(x), \epsilon^{(i)}(x), \sigma^{(i)}(x), i = 1, 2, ..., 6.$
- 2. The symmetric tensors $\epsilon^{(i)}(x)$ and $\sigma^{(i)}(x)$ are rearranged as vectors $\underline{\epsilon}^{(i)}(x), \underline{\sigma}^{(i)}(x) \in \mathbb{R}^{6}$.
- 3. Compute volume averages $\langle \underline{\epsilon}^{(i)} \rangle$ and $\langle \underline{\sigma}^{(i)} \rangle$ over Ω and arrange the vectors columnwise as matrices $\langle \underline{\epsilon} \rangle$ and $\langle \sigma \rangle$.
- 4. The apparent stiffness tensor (in matrix form) is then defined by

$$\langle \underline{\sigma} \rangle = \underline{\underline{C}}^{\mathsf{app}} \langle \underline{\epsilon} \rangle .$$

 $\underline{\underline{C}}^{app} \approx \underline{\underline{C}}^{eff}$, the effective stiffness of the material at the scale of the RVE Ω . $\xrightarrow{\sim} \underline{\underline{C}}^{app}$ captures smaller-scale information.

Sets of boundary conditions (1)

1. Pure linear displacements boundary conditions

$$u(x) = M^{(i)}x$$
 for all $x \in \partial \Omega$.

2. Pure tractions boundary conditions (n(x) = unit outer normal at $x \in \partial \Omega$)

$$\sigma(x)n(x) = M^{(i)}n(x)$$
 for all $x \in \partial \Omega$.

Remark: requires additional constraint for a unique solution u. Choice of matrices $M^{(i)}$:

$$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta \end{pmatrix}, \begin{pmatrix} 0 & \beta & 0 \\ \beta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \beta \\ 0 & \beta & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & \beta \\ 0 & 0 & 0 \\ \beta & 0 & 0 \end{pmatrix}$$

Sets of boundary conditions (2)

3. Periodic boundary conditions

$$u(x)-{\mathcal P}^{(i)}(x)$$
 is periodic for $x\in\partial\Omega$ and $\left\langle u-{\mathcal P}^{(i)}
ight
angle$ = 0.

Here:

$$P^{(i)}(x) = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}, \begin{pmatrix} y \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ z \\ 0 \end{pmatrix}, \begin{pmatrix} z \\ 0 \\ 0 \end{pmatrix}$$

Details: [Cioranescu & Donato, An Introduction to Homogenization, OUP, 1999]

Implementation issues

Comsol, using its Matlab programming interface, provides the tools required to implement the computation of the apparent stiffness tensor \underline{C}^{app} .

- displacement and traction BCs: implemented in "solid" application mode;
- periodicity constraints: implemented using extrusion coupling variables and boundary constraints;
- volume average constraints: implemented using integration coupling variables and point constraints;
- stress/strain averages: implemented using integration coupling variables.

Remarks:

► Higher accuracy for periodic BCs on periodic (unstructured) boundary mesh.

Numerical results: the lamellar unit (1)

The lamellar unit

- is the structural building block of an osteon;
- is a layered structure with fixed orientation θ_i of mineralised collagen fibrils in each layer i;
- the orientation changes from layer to layer.

Model input data:

- SAM at 1.2 GHz is used to derive a transverse isotropic stiffness tensor C(θ) for θ = 0;
- b the stiffness tensor C(θ_i) in layer i is obtained by rotating C(0).

Comsol, Paris | 17-19 November 2010 | FB Mathematik, TU Darmstadt, Germany | A. Gerisch | 11

Numerical results: the lamellar unit (2)

- The LU model: asymmetric plywood, twist angle 30°. Homogenisation recovers (experimental) anisotropy at osteon scale.
- Other LU models: symmetric or orthogonal plywood ~> do not result in this characteristic anisotropic feature.

→ *asymmetric plywood*: strong candidate for real structure at the LU-level of organisation.

Self-consistent RVE scheme

The effective stiffness of an RVE is independent of applied BCs.

Goal: Reduce influence of applied BCs in computation of apparent stiffness \underline{C}^{app} .

Method: embed RVE Ω in domain $\tilde{\Omega}$ and use material with the (yet unknown) effective/apparent stiffness in $\tilde{\Omega} \setminus \Omega$.

 \rightsquigarrow iterative scheme computing $\underline{\underline{C}}^{app,0}, \underline{\underline{C}}^{app,1}, \dots$

- 1. Set i = 0 and initial guess for apparent stiffness <u> $C^{app,0}$ </u>.
- 2. Solve (LE) in $\tilde{\Omega}$ with <u>C</u>^{app,i} for given BCs.
- 3. Compute stress/strain averages in embedded RVE Ω and determine <u>C</u>^{app,i+1}.
- 4. IF distance($\underline{\underline{C}}^{app,i}, \underline{\underline{C}}^{app,i+1}$) \leq tolerance (convergence test) THEN $\underline{\underline{C}}^{app} := \underline{\underline{C}}^{app,i+1}$, RETURN. ELSE i := i + 1 and GOTO step 2.

Implementation issues

- > The standard RVE approach can be fully utilised with minor changes.
- Reuse solution u of ith iteration as initial solution guess in iteration i + 1.
- ▶ In our application, a few (4–6) iterations are usually sufficient for convergence.
- If the RVE has void pores then the embedding of the RVE makes the computations more robust.

Conclusions

- Developed a numerical homogenisation scheme within Comsol Multiphysics.
- In principle, any material or structure can be inside the RVE.
- Periodic grids improve accuracy with periodic BCs.

Open problems and outlook

- Periodic BCs:
 - the linear iterative solver has convergence problems;
 - occasionally, the grid does not turn out to be periodic.
- Further improvements in required CPU time by spatial adaptivity.
- But: Periodic grids prevent (simple) use of spatial adaptivity.
- Tests with other homogenisation problems (also non-bone).