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Introduction

Multiphase fluidic applications have taken root in
many of today’s consequential industries from energy
to biology and medical diagnostics [1, 2, 3]. The U.S.
Energy Information Administration estimates a rise in
U.S. natural gas production from approximately 80
billion cubic feet per day in 2018 to 120 billion cubic
feet per day in 2050. Natural gas is projected to
continue surpassing all other fuel sources in
electricity generation (estimated to produce 39% of
U.S. electricity by 2050) even with the rapid growth
of all renewable sources used to produce electricity
(estimated to rise from 18% in 2018 to 31% by 2050)
[4]. The primary process to procure natural gas in the
U.S., hydraulic fracturing, has been a topic of
controversy in regard to public health and
environmental safety. A typical well requires about 2
to 13 million gallons of proprietary fluid
(predominantly water with additives) where only 10%
to 40% return to the surface as ”flowback” [5]. Amid
sizeable concerns for public health and environmental
safety, thousands of well sites are about to be drilled
in order to fulfill U.S. energy needs through the next
30 years. Incredible impact can come from innovating
more efficient and safe fluidic processes for critical
energy applications such as natural gas extraction.

In operations such as natural gas extraction, oversized
microbubbles traveling through confined conduits
have an entrained lubrication layer surrounding them
[6]. As oversized microbubbles encounter obstacles
and stop, those surrounding thin films can drain,
leading to bubble contact with the channel walls.
Such contact and adhesion create flow blockages,
requiring significant increases in pressure gradient to
discharge channel contents. These obstructions can be
compounded due to the vast number of fissures within
one natural gas well. Similarly, oversized bubble
blockages can adversely affect any pumping
application such as biochemical analysis or medical
device design and manufacturing.

The ability to manipulate bubble shape in a flow
channel would unlock new possibilities. Surface
tension and hydrodynamic boundary conditions are
the typical determining parameters of bubble

deformation, but another method for influencing
interfacial behavior is through electrostatic
interactions. Surfactant molecules are widely
implemented during industrial processes to stabilize
emulsions as they commonly have hydrophilic heads
and lipophilic tails that naturally adsorb to
liquid/liquid or liquid/gas interfaces [7, 8]. If these
interfacially adsorbed surfactants possess sufficient
charges and an electric field exists in the domain,
electrostatic forces may modify the bubble geometry.
Another implementation could be through Pickering
emulsions in which solid particles self assemble along
liquid/liquid and liquid/gas interfaces. They can be
densely packed and prevent emulsion coalescence [9].
As such, if densely packed nanoparticles held a
sufficient charge, the interface would effectively hold
a charge. As this charged interface encounters an
external electric field, electrostatic interactions on the
adsorbed particles could deform the interface. Such
environments could possibly prevent lubrication layer
drainage, and affect other bubble/channel or
bubble/bubble interactions. Surfactants and densely
packed nanoparticles would additionally modify the
surface tension and hydrodynamics in ways beyond
the scope of this investigation, which strictly looks at
electrostatic influence on interfacial behavior.

We theorize that if electric charges are introduced at
the channel wall and bubble interface, the bubble
interface can be manipulated through local repulsive
or attractive forces toward the channel wall.
Quantifying such behavior could shed light on the
potential for maintaining a thin film for oversized
bubbles in a microchannel, multiple bubble
interactions, or even new geometries for thermal
applications. With the basic characterization of key
parameters such as interfacial and wall potential, ionic
concentration in the bulk, and surface tension, the
understanding of electrostatic contributions to bubble
morphology can be applied to the industrial fields
described above.
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Theory

Surface Tension

A free air bubble in water exhibits a spherical
equilibrium shape. A continuous phase liquid, like
water, has cohesive intermolecular forces due to
hydrogen bonds [10]. As such, exposed surfaces
experience a tension pulling toward the rest of the
bulk where the minimal energy required results in
minimal exposed surface area. Conventional surface
tension units in Newtons per square meter, could be
understood as the force required to maintain the
surface area of a liquid interface by a unit area.
Geometrically, this minimal energy state is a sphere,
where the pressure difference between the
surrounding bulk fluid and internal gas equals the
tension force along the interface.

An oversized bubble moving along a channel
deforms, exhibiting bullet-like shapes with an
entrained lubrication layer surrounding it [11]. These
indicate varying local pressures and shear stresses
acting on the interface, inducing a bubble morphology
that requires new geometries for energy balance.
High velocities dramatically impact bubble shape, but
lower velocity conditions cause less deformation. For
stationary bubbles, symmetrical shapes are observed
following the described surface tension concepts.

Transport Modeling

Incompressible, Newtonian fluid modeling conserves
mass and momentum by the continuity in Eq. (1) and
the Navier-Stokes equation in Eq. (2)

ρ∇ · u⃗ = 0, (1)

ρ
∂u⃗

∂t
+ρ(u⃗ ·∇)u⃗ = ∇·

[
−pI⃗+µ

(
∇u⃗+(∇u⃗)T

)]
+F⃗ ,

(2)
where ρ is density, u⃗ is velocity vector, µ is dynamic
viscosity, p is pressure, I⃗ is the identity vector, and F⃗
represents external forces. Eq. (1) and (2) can also be
expanded to describe multiphase flows where more
than one fluid is in the domain. One can treat the
dispersed phase as a second continuous phase with
another iteration of Eq. (1) and (2), where averaging
of phases is needed and boundary conditions with
interaction terms may be difficult. For separated
flows, modeling each of the individual phases can be
independently described by both equations with
kinematic/dynamic boundary conditions at the
interface [12].

Similarly, mass transport conserves chemical species

and can be described by

∂c

∂t
+∇ · (−D∇cj) + u⃗ · ∇cj = Rj (3)

for every species j, where cj is the concentration of j,
Dj is the diffusion coefficient of j, Rj is the rate of
generation of j, and u⃗ is the flow velocity. Eq. (3)
essentially draws from the time rate of change of
concentration, species diffusion, species advection
and species generation to describe the mass
conservation within a differential volume [13].

Electric Double Layer

The electric potential is defined in relation to the
electric field as

E⃗ = −∇ϕ, (4)

where E⃗ is the electric field, and ϕ is the electric
potential. Gauss’ law describes the electric field
within dielectric materials as

∇ · D⃗ = ρe, (5)

where D⃗ is the electric displacement field and ρe is
the space charge density [14]. These fundamental
relationships describe electric charge behavior and the
electric field within dielectric media.

A charged boundary in contact with an ionic solution
develops an electric double layer (EDL). In an effort
to reach electrostatic equilibrium, counter-ions are
drawn toward the boundary while co-ions are
repelled, thus forming the EDL region that screens the
electrostatic effects of the boundary charges from the
bulk fluid [15]. The electrostatic strength of the
charged walls is typically represented by ζ, the wall
ζ-potential. Due to the Boltzmann distribution of the
ions in the EDL, the near-wall electric potential
follows

ϕ (x) = ζe−x/λ (6)

if the Debye-Huckel approximation conditions are
satisfied. Here, x is the distance from the charged
wall and

λ =

 F 2

ϵϵ0RT

∑
j

z2jCj,b

−1/2

(7)

is the Debye length that characterizes the thickness of
the EDL. F is the Faraday constant, ϵ is the fluid
dielectric constant, ϵ0 is the vacuum permittivity, R is
the universal gas constant, T is the fluid temperature,
zj is valence of ion j, and Cj,b is the concentration of
ion j in the fluid bulk. As shown in Eq. (6) and (7),
ionic concentration is a major factor that affects the
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Debye length and the overall electric potential
distribution. For a given wall charge, a high
concentration of ions provides more charges to screen
the effect of ζ, resulting in a thinner EDL.
Conversely, a lower concentration of ions cannot as
readily supply charges to neutralize ζ, resulting in a
thicker EDL. A thicker EDL extends the reach of wall
charges farther into the fluid bulk.

Model

Geometry

In order to characterize interfacial behavior of
electrostatic forces acting on a charged bubble, a
model was developed to determine a possible range of
repulsive and attractive interactions due to electric
potential. This model placed a spherical bubble of
radius, r0 = 50 µm, in a cylindrical water filled
microchannel of radius, rc = 50.2 µm, as shown in
Fig. 1. The 200 nm initial spacing between the bubble
interface and channel wall would be sufficient for a
near overlap of Debye lengths if the bulk symmetric
electrolyte concentrations, C1 and C2 (collectively
referred to as Cj,b), are on the order of 10 µM.
Additionally, the outlet at the top was placed
sufficiently far away from the bubble to avoid inlet or
outlet interference to the flow. A surface ζ-potential
on the channel wall would provide an electrostatic
environment for the charged interface to interact with,
and after the bubble reaches an equilibrium position,
the final interfacial displacement, df , away from r0
at the horizontal symmetry plane, z = 0, could be
measured for each parametric case.
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Figure 1. 2D axisymmetric view of spherical air bubble ge-
ometry in water-filled microchannel
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Figure 2. Boundary conditions of governing equations,
viewed in 2D axisymmetry with horizontal planar
symmetry

This multiphysics model incorporates 3 sets of
coupled governing equations and boundary conditions
to handle all of the parameters in action. Namely,
numerical solutions to the conservation of mass and
momentum for fluid mechanics, species conservation
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for mass transport, and Maxwell’s equations for
electrostatics are sought simultaneously. With
axisymmetry and planar symmetry of the cylindrical
channel and spherical bubble, we define the boundary
conditions for each physical aspect as shown in Fig. 2.
Here, we model one quarter of a channel cross-section
where the left boundary is the channel axis. The
channel wall and the channel outlet are at the right and
top boundaries, respectively. The bubble, which has a
defined surface tension γ, holds zero axial velocity as
there is no pressure gradient along the channel. A
symmetric electrolyte concentration of Cj,b composed
of positive and negative ions, C1 and C2, is defined at
the outlet boundary and in the water bulk. The
interface between the air and water is treated as an
impermeable barrier to ions. The channel wall and
bubble interface have surface potentials ζ and ϕi,
respectively. The ionic water is capable of holding a
space charge density, ρe, corresponding to local ionic
concentrations influenced by the surface potentials.

Module Setup

In order to develop a COMSOL model for this
multiphase multiphysics problem, three modules are
fully coupled with a customized weak contribution. In
order to capture the interfacial movement with a high
resolution, COMSOL’s Two Phase Flow Moving
Mesh Module (TPFMM) was selected to accurately
mark the exact position of the interface as the
interface deforms. The Electrostatics Module (ES) is
used to apply an electric potential on the channel wall
and bubble interface, ground the channel outlet, and
calculate the electric field across the domain. The
Transport of Dilute Species Module (TDS) utilizes the
mass conservation equations to model ionic transport
throughout the domain. In order for capture all
physical interactions appropriately, all of the
governing equations from each module must be fully
coupled. Fig. 3 describes how the the three modules
are linked by variables. ES takes Cj,b from TDS to
compute ρe and E⃗. TPFMM uses E⃗ from ES to
calculate interfacial movement and liquid flow. TDS
takes V from ES and u⃗ from TPFMM to determine
the ion distribution in the water. Built-in COMSOL
options easily couple all these modules except ES and
TPFMM via E⃗, shown with the red arrow. No default
coupling option of electrostatic forces for interfacial
deformation exists, so a customized weak
contribution was developed to link TPFMM and ES.
As a transient model, this setup solves the stationary
case first to establish the EDL, and then solves the
transient bubble deformation until an equilibrium
shape was reached. By solving for the stationary EDL

first, computation time is saved as the time scale of
establishing the EDL is much shorter than the
interfacial deformation time scale, and the process of
EDL establishment does not impact the final bubble
equilibrium shape.

Initial 
Conditions TDS ES TPFMM

Cj E
u𝜙

Figure 3. Variable coupling among COMSOL modules

Developing the Weak Formulation

Consider a laminar, viscous flow of a gas bubble
deforming in a restrictive cylindrical flow channel
filled with a liquid and exposed to an electric field. If
gravitational force is negligible, the Navier-Stokes
equation takes the form of

ρ

[
∂u⃗

∂t
+ (u⃗ · ∇) u⃗

]
= ∇ · ¯̄σ (8)

where ¯̄σ is the total stress tensor. The boundary
condition at a two-fluid interface takes the form of

n̂ · (¯̄σA − ¯̄σB) = Γγn̂−∇sγ − ρs∇ϕ (9)

where n̂ is the outward unit normal vector pointing
from fluid B (gas) to fluid A (liquid), Γ ≡ ∇s · n̂ is
the local interface curvature,

∇s =
(
¯̄I − n̂n̂

)
· ∇ = ∇− n̂

∂

∂n
(10)

is the gradient operator in the boundary surface
curvilinear coordinate, γ is surface tension between
the two fluids, ρs is the interface surface charge
density, and ϕ is the electric potential experienced by
the interfacial charges.

In finite element analysis, the governing equation and
interfacial boundary conditions are applied through
the weak formulation [16]. First, Eq. (8) is multiplied
with a test vector function v⃗, and then integrated over
the volume of the fluid of interest Ω,∫

Ω

ρ

[
∂u⃗

∂t
+ (u⃗ · ∇) u⃗

]
· v⃗ dΩ =

∫
Ω

(∇ · ¯̄σ) · v⃗ dΩ.

(11)
Integrating the divergence of the total stress term by
parts leads to∫

Ω

ρ

[
∂u⃗

∂t
+ (u⃗ · ∇) u⃗

]
· v⃗ dΩ =

−
∫
Ω

∇v⃗ : ¯̄σ dΩ+

∫
S

v⃗ · (n̂ · ¯̄σ) dS (12)
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where S represents the surface bounding Ω. The
surface integral is evaluated based on the imposed
boundary conditions and is handled as boundary weak
contribution in COMSOL. Suppose fluid B is a gas
such that ¯̄σB ≈ 0 and ¯̄σA = ¯̄σ. Applying Eq. (9) to
the surface integral in Eq. (12), we get∫

S

v⃗ · (¯̄σ · n̂) dS =

∫
S

v⃗ · [(∇s · n̂) γn̂] dS

−
∫
S

v⃗ · ∇sγdS −
∫
S

v⃗ · ρs∇ϕdS, (13)

where we have used Γ = ∇s · n̂. To proceed further,
we make use of the surface divergence theorem [17]
where for any arbitrary vector w⃗,∫

S

(∇s · n̂) (w⃗ · n̂) dS

=

∫
S

∇s · w⃗ dS −
∫
C

w⃗ · m̂dC (14)

where C is the contour that bounds surface S and m̂
is a unit vector that is simultaneously normal to C and
n̂. Rewriting Eq. (13) by applying the surface
divergence theorem of Eq. (14), we get∫

S

v⃗ · (¯̄σ · n̂) dS =

∫
S

γ (∇s · v⃗) dS

−
∫
S

v⃗ · ρs∇ϕdS −
∫
C

γv⃗ · m̂ dC, (15)

where we have applied the vector calculus identity of

∇s · (γv⃗) = v⃗ · ∇sγ + γ (∇s · v⃗) . (16)

Substituting Eq. (15) into Eq. (12) we get∫
Ω

ρ

[
∂u⃗

∂t
+ (u⃗ · ∇) u⃗

]
· v⃗ dΩ =

−
∫
Ω

∇v⃗: ¯̄σ dΩ+

∫
S

γ (∇s · v⃗) dS

−
∫
S

v⃗ · ρs∇ϕdS −
∫
C

γv⃗ · m̂ dC, (17)

which is the complete weak form governing equation
of interfacial deformation between a liquid and a gas
due to surface tension and electrostatic force.

Finally, the contour integral in Eq. (17) must be
considered only if there exists a contact line and is
critical in modeling contact line dynamics. That is,
the contour integral term is non-zero only if the gas
bubble makes contact with the channel wall. In our
model, we focus on the bubble interface deformation
before it makes contact with the channel wall.

Therefore without any contact line, the contour
integral term is zero in our model. This reduces Eq.
(17) to∫

Ω

ρ

[
∂u⃗

∂t
+ (u⃗ · ∇) u⃗

]
· v⃗ dΩ = −

∫
Ω

∇v⃗: ¯̄σ dΩ

+

∫
S

γ (∇s · v⃗) dS −
∫
S

v⃗ · ρs∇ϕdS. (18)

We also note that in this weak formulation the
variable to be solved in Eq. (18) is u⃗ while ϕ is
considered as given. Thus a test function for ϕ is not
needed to reduce its order of differentiation.

Implementing the Weak Contribution

The electrostatic force acting on the bubble surface is
captured by the last term of Eq. (18). This must be
implemented as weak contribution in appropriate
COMSOL syntax. In COMSOL, basis functions (test
functions) are established through test operators.
Here, we are interested in solving for velocity, which
in cylindrical coordinates has components in the r̂, θ̂,
and ẑ directions. The test operators must operate on
the velocity components corresponding to the
direction in which the basis functions are trying to
approximate.

To implement the electrostatic boundary conditions,
an electric potential is defined on the bubble surface.
As such, the gradient of electric potential,∇ϕ, and
the surface charge density, ρs, need to be represented
by the electric field. Electromagnetic theories indicate

E⃗ = −∇ϕ, (19)

and
ρs = εε0

(
E⃗ · n̂

)
, (20)

where ε is the dielectric constant of water and n̂ is the
normal unit vector on the bubble surface toward the
water. Substituting Eq. (19) and Eq. (20) into the last
term of Eq. (18), we have

−
∫
S

v⃗ ·ρs∇ϕdS =

∫
S

v⃗ ·εε0
(
E⃗ · n̂

)
·(E⃗) dS. (21)

With 2D axisymmetry, Eq. (20) becomes

ρs = εε0 (Ernr r̂ + Eznz ẑ) (22)

and Eq. (21) can be written as

−
∫
S

v⃗ · ρs∇ϕdS =∫
S

viεε0 (Ernr r̂ + Eznz ẑ) (Er r̂ + Ez ẑ) dS. (23)
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Converting to COMSOL syntax, the right-hand side
of Eq. (23) can be written as

“mat1.epsilonr*epsilon0_const*
[es.Er*nr+es.Ez*nz]*[test(u)*es.Er+
test(w)*es.Ez]”

which is inserted as the weak contribution term on the
right hand side of the Navier-Stokes equation in a 2D
axisymmetric TPFMM case, completing the coupling
of the electric field with interfacial deformation.

Results

The main objective of this investigation was to
understand how electrostatic interactions in this
multiphysics environment may affect bubble surface
repulsion or attraction to the channel wall. The key
parameter used to quantify repulsive or attractive
behavior between the bubble surface and the charged
channel wall is df . A baseline bubble with no
electrostatic interactions was found to maintain a
spherical shape where df = 0 nm, equivalent to no
deformation. The equilibrium state of charged cases
showed that the bubble radius at z = 0 is consistently
the nearest interfacial point to the wall, suggesting df
as a strong metric of the electrostatic force effects on
the interface. Cj,b and ϕi are observed to be important
parameters affecting df . Each parametric
combination demonstrated varying degrees of
repulsion and attraction as shown in Fig. 4. On this
plot, df vs. Cj,b between 10 µM and 600 µM under
six different values of ϕi is shown. For all data, ζ is
fixed at 50 mV.

Figure 4. df for varying Cj,b and ϕi at ζ = 50 mV

Repulsive behavior is observed for cases of positive
ϕi at low Cj,b. At one extreme, Cj,b = 10 µM and ϕi

= 75 mV produces a repulsive displacement of df of
-16 nm. Fig. 5a illustrates the EDL across the thin

film at equilibrium with the initial thin film starting at
the black line at r0. Less repulsive displacement is
observed as Cj,b increases. The trend from positive ϕi

cases indicate that for + 25 < ϕi < +75 mV repulsion
can be achieved at Cj,b < 70 µM. This can be
explained by the Boltzmann distribution of ions in the
EDL, where at lower ionic concentrations the EDL
screening effect is weaker. This effectively enables
the charged wall and bubble surface to have an
electrostatic reach farther into the water bulk.
Additionally, as the concentration increases above 70
µM in the 50 mV and 75 mV cases, a surprisingly
flipped behavior arises where the df reveals a weak
attraction. This could be due to an added effect of
highly concentrated ions in the EDL near the bubble
surface and the wall. Nevertheless, repulsive behavior
is clearly observed under low ionic concentration with
high bubble surface and wall electric potentials.

(a) ϕi = 75 mV

(b) ϕi = −50 mV

Figure 5. ϕ across thin film at equilibrium when Cj,b = 10
µm and ζ = 50 mV

Attractive behavior is seen for all of the negative ϕi

and sufficiently low Cj,b cases. The greatest attractive
df observed is 42.7 nm at ϕi = −50 mV and
Cj,b = 10 µM. Fig. 5b shows the symmetrical EDL
profile across the thin film with the initial interface
location at the black line at r0. All negative ϕi cases
seem to exhibit little to no variation from the baseline
(df = 0 nm) at sufficiently high Cj,b (above 100-200
µM), which affirms that the electric potentials of the
bubble surface and the channel wall are well screened
by the EDL (λ < 30 nm on both sides of gap).
Attraction appears to increase with increasingly
negative ϕi and decreasing Cj,b. This intuitively
agrees with how lower Cj,b increases the range of an
electric potential’s influence with less available
screening ions, while higher Cj,b provide sufficient
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ions in the EDL to screen out the electric field created
by the opposite charges of the bubble surface and the
channel wall.

Conclusions

In summary, we created a COMSOL multiphysics
model to quantify repulsive and attractive interactions
between a charged bubble surface and a charge
channel wall. A custom weak contribution was
derived and implemented in COMSOL to
appropriately couple interfacial electric force and
bubble surface deformation. The simulation results
show that the combination of electric potential and
ion concentration for a given geometry are important
factors that dictate interfacial deformation. With
larger electric potentials of like polarity, thicker thin
films can be maintained, but only below a certain
threshold of ion concentration. The data gathered
prescribes the ability to develop repulsive
electrostatic environments and points to the
possibility of precluding bubble contact in confining
conduits where greater electric potentials, different
bubble geometries, and varying material properties
could facilitate repulsive behavior. In our future
research, we will use the developed COMSOL model
to strategically study oversized bubbles and electric
parameters to better understand the interfacial
repulsion and attraction.
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