Electrostatic Interactions Between Charged Bubble Interface and Solid Wall

BINGHAMTON UNIVERSITY OF NEW YORK

Mechanical Engineering

Projected U.S. Natural Gas Consumption & Production

Dry natural gas production

Source: U.S. Energy Information Administration Annual Energy Outlook 2019

- Increase in production and consumption through next 30 yrs
- International Energy Agency: 2018 record high production of 139 tcf (4% increase from 2017)
- Hydraulic fracturing has become predominant method of extracting gas since 2011 and accounted for most of all new wells drilled since late 2014

BINGHAMTON	Background	Problem	Method	Results	Conclusion
STATE UNIVERSITY OF NEW YORK		Optical and Fluidic Technolog	gies Laboratory		Jonathan C. Hui © 2019 – 2

Hydraulic Fracturing Overview

Source: M. K. Mulligan and J. P. Rothstein. Deformation and Breakup of Micro- and Nanoparticle Stabilized Droplets in Microfluidics Extensional Flows. Langmuir, 27(16):9760–9768, July 2011

BINGHAMTON	Machanical Engineering	Background	Problem	Method	Results	Conclusion
UNIVERSITY OF NEW YORK	Mechanical Engineering		Optical and Fluidic Technologies Laborator	y		Jonathan C. Hui © 2019 – 3

Problem

BINGHAMTON	Machanical Engineering	Background	Problem	Method	Results	Conclusion
UNIVERSITY OF NEW YORK	Mechanical Engineering		Optical and Fluidic Technolo	gies Laboratory		Jonathan C. Hui © 2019 – 4

Problem

BINGHAMTON	Machanical Engineering	Background	Problem	Method	Results	Conclusion
UNIVERSITY STATE UNIVERSITY OF NEW YORK	Mechanical Engineering		Optical and Fluidic Technolog	gies Laboratory		Jonathan C. Hui © 2019 – 5

Problem

Deformation and Contact Considerations:

- Surface Tension
- Disjoining Pressure
- Electrostatic Forces

BINGHAMTON	Machanical Engineering	Background	Problem	Method	Results	Conclusion
N I V E R S I T Y	Mechanical Engineering		Optical and Fluidic Technologies Laboratory			Jonathan C. Hui © 2019 – 6

Model – Geometry

Objectives:

- Find conditions of maximal electrostatic repulsion between bubble interface and channel wall
- Simulate bubble morphology due to electric charge effects from channel wall on spherical bubble interface using the customized weak contribution in COMSOL

Background

- Spherical bubble in microchannel
- 2D axisymmetry & planar symmetry
- Initial bubble radius = $50 \mu m$
- Channel radius = $50.2 \mu m$
- Half channel height = $62.75 \mu m$

Mechanical Engineering

UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Optical and Fluidic Technologies Laboratory

Problem

Model – Boundary Conditions

Fluid **Transport of Dilute Species** Electrostatic Outflow $P_{gage} = 0$ Pa Concentration C_1, C_2 Ground Space Charge Density, ρ_e Concentration C_1, C_2 Water Surface Axisymmetry Axisymmetry Axisymmetry No No Potential, Flux Slip Surface Impermeable Surface Tension, γ Barrier Potential, ϕ_i \sim Space Charge Air No lons Density, $\rho_e = 0 \text{ C/m}^3$ Symmetry Symmetry Symmetry $\rho
abla \cdot \vec{u} = 0$

 $\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} = \nabla \cdot \left[-p \vec{I} + \mu \left(\nabla \vec{u} + (\nabla \vec{u})^T \right) \right] + \vec{F}$

$$\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c_j) + \vec{u} \cdot \nabla c_j = R_j$$

$$\nabla \cdot \vec{D} = \rho_e$$

BINGHAMTON	Machanical Engineering	Background	Problem	Method	Results	Conclusion
J N I V E R S I T Y STATE UNIVERSITY OF NEW YORK	Mechanical Engineering		Optical and Fluidic Technologies Laboratory			Jonathan C. Hui © 2019 – 8

Model – Module Implementation & Weak Formulation

- Two Phase Flow Moving Mesh Method (TPFMM) Multiphase, interfacial tracking
- Transport of Dilute Species module (TDS) Ion concentration
- Electrostatics module (ES) Electric field

$$\rho \left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right] = \nabla \cdot \bar{\sigma}$$
 Navier-Stokes Eqn

$$\hat{n} \cdot (\bar{\bar{\sigma}}_A - \bar{\bar{\sigma}}_B) = \Gamma \gamma \hat{n} - \nabla_s \gamma - \rho_s \nabla \phi$$

Boundary Condition at Fluid-Fluid Interface

Total Stress With unit normal from gas B to liquid A

Surface Tension

Electrostatics

Weak Form

Results – Electric Double Layer

Verify COMSOL Capability for Steady State EDL Profile

Electric Potential Profile Away from Wall

Mechanical Engineering

UNIVERSITY STATE UNIVERSITY OF NEW YORK

Numerical Debye Length

$$\psi(x) = \zeta e^{-x/\lambda}$$
 (Boltzmann distribution)
 $\ln \psi = -\frac{1}{\lambda}x + \ln \zeta$

Theoretical Debye Length

$$\lambda = \left(\frac{F^2}{\epsilon \epsilon_0 RT} \sum_i z_i^2 C_{i,b}\right)^{-1/2}$$

(Debye-Huckel approximation)

$$\lambda = \left(\frac{2C_b F^2}{\epsilon \epsilon_0 RT}\right)^{-1/2}$$

(Univalent-Univalent, Symmetric Electrolyte)

C (M)	$\lambda_{nm} \ ({\rm nm})$	$\lambda_{th}~({ m nm})$	$rac{\lambda_{th} - \lambda_{nm}}{\lambda_{th}} \cdot 100$
0.001	9.60	9.63	0.3
0.0001	29.9	30.4	1.6

Strong Theoretical & Numerical Agreement

Background	Problem	Method	Results	Conclusion
	Optical and Fluidic Technologies Laboratory			Jonathan C. Hui © 2019 – 1

Results – Repulsion/Attraction

- Repulsive behavior with like electric potential
- Attractive behavior with unlike electric potential
- Double layer overlapped and updated through time

Mechanical Engineering

Background

BINGHAMTON

UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Results – Attraction/Repulsion

UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Final Displacement vs. Concentration at Various Interfacial Potential

- Unlike Potential
 - Attractive behavior for low concentration
 - Neutral behavior for high concentration

Like Potential

- Repulsive behavior for low concentration
- Attractive behavior for high concentration

Conclusion

- Developed a customized model to couple electrostatic influence on bubble interfacial morphology
- Quantify repulsive and attractive interactions between charged bubble interface and charged channel wall
- Key parameters: Electric potential and ion concentration for a given geometry
- Below certain ionic concentration threshold, larger electric potentials of like polarity maintain thicker lubrication layers
- Ability to create repulsive environments indicates strong possibilities for precluding bubble contact

Acknowledgements:

American Chemical Society Binghamton University, State University of New York

BINGHAMTON	Machanical Engineering	Background	Problem	Method	Results	Conclusion
UNIVERSITY STATE UNIVERSITY OF NEW YORK	Mechanical Engineering		Optical and Fluidic Technolo	gies Laboratory		Jonathan C. Hui © 2019 – 13