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Projected U.S. Natural Gas Consumption & Production
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Source: U.S. Energy Information Administration Annual Energy Outlook 2019

* Increase in production and consumption through next 30 yrs

* International Energy Agency: 2018 record high production of 139 tcf (4%
increase from 2017)

* Hydraulic fracturing has become predominant method of extracting gas since
2011 and accounted for most of all new wells drilled since late 2014
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Monthly crude oil and natural gas well drilling footage by type (2000-2016)
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Hydraulic Fracturing Overview

Natural gas flows from fissures ] et
into well 0- and

Nanoparticle Stabilized Droplets in Microfluidics Extensional Flows. Langmuir,
27(16):9760-9768, July 2011

Source: U.S. Environmental Protection Agency
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Charged Particles

Deformation and Contact Considerations:
*  Surface Tension
* Disjoining Pressure
* Electrostatic Forces
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Model — Geometry

Objectives:

Find conditions of maximal electrostatic repulsion
between bubble interface and channel wall

Simulate bubble morphology due to electric charge
effects from channel wall on spherical bubble

interface using the customized weak contribution in
COMSOL

wr G/°29

Spherical bubble 1n microchannel
2D axisymmetry & planar symmetry
Initial bubble radius = 50um
Channel radius = 50.2um

Half channel height = 62.75um

Channel Wall
IIEAA [2UUeYD

Outlet
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Model — Boundary Conditions
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Model — Module Implementation & Weak Formulation

Two Phase Flow Moving Mesh Method (TPFMM) — Multiphase, interfacial tracking
Transport of Dilute Species module (TDS) — Ion concentration
Electrostatics module (ES) — Electric field
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Results — Electric Double Layer
Verity COMSOL Capability for Steady State EDL Profile

Electric Potential Plot Near Wall
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Numerical Debye Length
Y (x) =( e %/ (Boltzmann distribution)

Iny = —%:c—l—lng

Theoretical Debye Length

=15
2 Debye-Huckel approximation
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A= ( l}{T) (Univalent-Univalent, Symmetric Electrolyte)
€€p

C M) | Apme (nm) | Az (nm) W - 100

0.001 9.60 9.63 0.3
0.0001 29.9 30.4 1.6

Strong Theoretical & Numerical Agreement
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Results — Repulsion/Attraction
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Results —Attraction/Repulsion

Final Displacement vs. Concentration at Various Interfacial Potential

While { =+ 50 mV
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Conclusion

* Developed a customized model to couple electrostatic influence on bubble interfacial morphology

* Quantity repulsive and attractive interactions between charged bubble interface and charged channel wall

* Key parameters: Electric potential and 1on concentration for a given geometry

* Below certain ionic concentration threshold, larger electric potentials of like polarity maintain thicker
lubrication layers

* Ability to create repulsive environments indicates strong possibilities for precluding bubble contact

Acknowledgements:
American Chemical Society
Binghamton University, State University of New York

BINGHAMTON Background ethod Re 0 0

INIVERSITY Mechanical Engineering




