

COMSOL Model of a Martian Electrostatic Precipitator

Jerry Wang, Joel Malissa (presenting), James Phillips, Michael Johansen, and Carlos Calle Electrostatics & Surface Physics Laboratory Exploration Research and Technology Programs Spaceport Technologies Office (UB-G) NASA Kennedy Space Center, Cape Canaveral, FL

In-Situ Resource Utilization

1) Resource Acquisition

Prospecting and mining robots Semi-autonomous

2) Resource Processing

Dust mitigation Chemical conversion Cryogenic storage

3) Fuel, Life Support, Infrastructure

Methane Water Oxygen Research outpost and facility

In-Situ Resource Utilization

1) Resource Acquisition

Prospecting and mining robots Semi-autonomous

2) Resource Processing Dust mitigation

Chemical conversion Cryogenic storage

3) Fuel, Life Support, Infrastructure

Methane Water Oxygen Research outpost and facility

• Electrodynamic Dust Shield

COMSOL

2019 BOSTON

CONFERENCE

- Protect solar panels, astronaut visors, and camera lenses (email us more use cases)
- Ruggedized version currently being exposed on ISS exterior
- Tested with Apollo Lunar regolith

• Electrodynamic Dust Shield

COMSOL

2019 BOSTON

CONFERENCE

- Protect solar panels, astronaut visors, and camera lenses (email us more use cases)
- Ruggedized version currently being exposed on ISS exterior
- Tested with Apollo Lunar regolith

• Martian Electrostatic Precipitator

COMSOL

2019 BOSTON

CONFERENCE

- Martian air → precipitator → CO₂ extractor...
 CO₂ extractor → Sabatier reactor + H₂ → methane & water → H₂ & O₂
- Corona charging + radial electric field = media-less dust filter

Electrostatic Precipitator

- Particle density (nominal): 1 10 particles/cm³
- Particle density (storm): 100 1000 particles/cm³
- Particle diameter: 1 10 μm
- Pressure: 4 7 torr s
- Particle charging: corona discharge
- Corona ionizes gas, ions attach to dust, charged dust repelled out to ground
- Optimize collection length vs. diameter for smallest precipitator
- Scale in parallel for greater flows

Density Distribution (Plasma Module)

1/m³

×10¹¹

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1/m³

×10¹³

Figure 4. Electric field strength

Figure 6. Positive ion density distribution

9

Model Objective

• Model positive corona discharge, determine accumulated charge on dust

1500

2000

• Characterize current vs. voltage (I-V curve) to compare to experiment

IV Curve MARS Gas vs. CO2 Gas, 4.75 Torr ~ 7.00 Torr

Electrode Voltage (V)

- Model particle trajectories
- Estimate collection efficiency and compare to experiment

500

1000

Hardware Setup

Model Setup

Boltzmann Equation

- Electron energy and cross-section data for different electron impact reactions
- Maxwellian shape function
- Townsend's coefficient, electron energy distribution function, and mean electron energy

Table 1. Summary of all species included in the model.Neutrals CO_2, CO, O_2, O, C Positive ions $CO_2^+, O_2^+, O^+,$ Negative ions O^-, O_2^-

DC Plasma Model

- Corona discharge
- Electron and ion density distribution
- Current-voltage relationship (IV curve)
- Particle charge estimation

Precipitator Model

- Laminar flow
- Electrostatics
- Particle tracing

IV Curve: Simulation vs. Data

Particle Trajectory & Collection Efficiency

1 um particle 500 SCCM (0.214 fC)

3 um particle 500 SCCM (1.925 fC)

5 um particle 500 SCCM (5.349 fC)

Diameter (µm)	$\eta_{empirical}$ (assumes air @ 1 atm)	ηςομεοί	η_{FPA}	η_{Laser}
1	77.8%	100.0%	99.6%	90.0%
3	98.8%	100.0%	99.5%	95.0%
5	99.9%	100.0%	99.7%	90.0%
10	100.0%	100.0%	99.0%	90.0%

10 um particle 500 SCCM (213.9 pC)

Summary

- I-V curve partially approximated experiment (shape and magnitude)
 - Premature corona discharge onset voltage
 - Moderate agreement at higher voltages; Maxwellian distribution assumes high degree of ionization
- Literature: 1 fC/um, model: 0.1 fC/um
- Simulation: collection efficiency > 90% during dust storm
- Laser counter (side scattering): efficiency erroneously low, dust re-entrenchment (known issue)

Diameter (µm)	$\eta_{\rm empirical}$	η _{comsol}	η_{FPA}	η_{Laser}
1	77.8%	100.0%	99.6%	90.0%
3	98.8%	100.0%	99.5%	95.0%
5	99.9%	100.0%	99.7%	90.0%
10	100.0%	100.0%	99.0%	90.0%

Questions?

Joel Malissa joel.d.malissa@nasa.gov

- HV is always positive because negative trials were less stable (electron mobility is higher than ion mobility, so negative electrode interacts more with charges than in positive field => more stable I-V corona curve (less steep slope for positive electrode)
- *also negative generates more ozone

Collection Efficiency

- Eq. from 1919 (100th anniversary)
- $\eta_{empirical}$ = dimensionless collection eff.
- A = collection area (m²)
- w = migration velocity (m/s)
- V_f = average fluid velocity (m³/s)
- ε_0 = vacuum permittivity constant
- $E_c = E$ -field at wire (V/m)
- $E_p = E$ -field at ground (V/m)
- η_{CO2} = dynamic viscosity (kg/(m s))
- d = particle diameter (m)

Fine Particle Analyzer (FPA)

- One upstream
- One downstream
- Sampling error: only measures from center
- Flow controller & pressure transducer determine percentage of flow sampled