2D Flow Past a Confined Circular Cylinder with Sinusoidal Ridges

Kieran Cavanagh ${ }^{1^{*}}$,Rachmadian Wulandana ${ }^{2}$,
1,2 Mechanical Engineering Program, State University of New York at New Paltz, NY, USA.
*Dept. Of Mathematics, State University of New York at New Paltz, NY, USA.

INTRODUCTION: Using the CFD Module of COMSOL Multiphysics 5.4, we studied the flow past a circular cylinder with sinusoidal ridges (shown below), at Reynolds numbers of $20,50,200$, and 500.

We define the cylinder in polar coordinates by
$r(\theta)=\frac{L}{2}+a \cdot \cos (\omega \theta), \quad 0 \leq \theta \leq 2 \pi$
Where $L=0.15 \mathrm{~m}$ is the base cylinder diameter, a is the ridge amplitude, and ω is the number of ridges.

Figure 1. Sinusoidally ridged cylinder, $a=\mathrm{L} / 25, \omega=15$.

COMPUTATIONAL METHODS: The computational domain is a two-dimensional plane channel with length $20 L$ and width $3 L$. The center of the cylinder is positioned in the center of the channel, a distance $2 L$ from the inlet. An inlet velocity with a parabolic profile is chosen at the leftmost wall, and a zero-pressure outlet boundary condition is chosen at the rightmost wall.

Inlet

Outlet
Figure 2. Computational domain with mesh

We use the following dimensionless quantities:

$$
R e=\frac{\rho U_{c} L}{\mu} \quad S t=\frac{f L}{U_{c}}, C_{D}=\frac{2 F_{D}}{\rho U_{c} L}, C_{L}=\frac{2 F_{L}}{\rho U_{c} L}
$$

Where U_{c} is the centerline velocity, f is the frequency of vortex shedding, and F_{D}, F_{L} are the total drag and lift forces, respectively.

Additionally, we perturb the flow with a brief vertical oscillation of the cylinder in order to trigger vortex shedding at $\mathrm{Re}=200$ and 500 .

Figure 2. Perturbation velocity vs. time
VERIFICATION: We check our results for a smooth cylinder against Shäfer et al (1996)[1] and Singha (2010)[2]. The results match with excellent agreement.

RESULTS: In the laminar flow regime, we found:

- The recirculation zone length is independent from the number of ridges
- The following relationships between the number of ridges and C_{D}, and for $\omega=4$, between the counterclockwise angle of attack α and C_{D} :

Figure 3. C_{D} vs. $\omega(\operatorname{Re}=50)$

Figure 4. C_{D} vs. $\alpha(\operatorname{Re}=50, \omega=4)$

- Similar relationships were found for $\operatorname{Re}=20$.

In the periodic shedding regime, we found the following relationships:

Figure 5. $C_{D, \text { mean }}$ vs. $\omega, \operatorname{Re}=200$
Figure 6. St vs. ω, $R e=200$ and and $500(a=L / 25)$

Figure 7. $C_{D, \text { mean }}$ vs. $\omega, a=L / 25$ and $\mathrm{a}=\mathrm{L} / 50(\operatorname{Re}=500)$

Figure 8. $C_{L, \text { pkpk }}$ vs. $\omega, a=L / 25$ and $a=L / 50(R e=500)$

- Values for the Strouhal number, St, were also computed.

CONCLUSIONS \& FURTHER RESEARCH:

- As ω increases, the C_{D}, C_{L}, and St values tend to approach that of a smooth cylinder ($\omega=0$).
- When $\omega>\sim 13$ in the periodic shedding regime, values for $S t, C_{D, \text { mean }}$, and $C_{L, \text { pkpk }}$ become approximately steady. When $\omega<\sim 13$, results are erratic and no clear trend can be deduced.
- More research needs to be done to investigate the unique geometry of cylinders with $1 \leq \omega \leq 4$.

REFERENCES:

1. Schäfer, M. et al., Benchmark computations of laminar flow around a cylinder, Flow simulation with high-performance computers II, pp. 547-566. Springer Vieweg Verlag, Germany (1996)
2. Singha, S. and Sinhamahapatra, K. P., Flow past a circular cylinder between parallel walls at low Reynolds numbers, Ocean Engineering, 37, No. 8-9, pp. 757-769 (2010)

Acknowledgements

SUNY New Paltz Summer Undergraduate Research Experience (SURE) Program for 2018

