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Abstract:

Consider the motion of an inviscid, constant-density
fluid in an unbounded domain subject to a constant
gravitational field and no other body forces. Sup-
pose that the motion is: (a), two-dimensional i.e.
there exists a plane P such that the fluid velocity
field has spatial variations only in the directions par-
allel to P; (b), localized, i.e. there is an origin OL

in P and a reference frame FL relative to which the
fluid at remote distances from OL is at rest; and (c),
in the form of a traveling disturbance, i.e. there is
a second reference frame FG and a point OG fixed
relative to FG that translates rectilinearly with con-
stant speed U relative to OL such that the motion is
stationary relative to FG. The present model sim-
ulates a motion that corresponds to the foregoing
assumptions and whose results agree with an ana-
lytical solution of the same problem (see page 245 of
Ref. 1), which I will call Lamb’s cylindrical dipole.

Keywords: Unbounded domains, Hydrodynamic-
Electrodynamic analogy, Equation-BasedModeling,
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1. Stream function in two subdomains,
one doubly-connected

Notation and partition into subdomains. Let
{̂ı, ȷ̂, k̂} be a right-handed set of constant unit vec-
tors with k̂ perpendicular to-, and ı̂ and ȷ̂ parallel
to P. Let ı̂ point in the direction in which OG trans-
lates relative to OL. Let (x, y, z) and (ξ, η, ζ) be sets
of cartesian coordinates belonging, respectively, to
axis systems with origins at OL and OG and positive
coordinate axes oriented in the directions of {̂ı, ȷ̂, k̂}
respectively, for both sets. Suppose that OG and
OL coincide at time t = 0. Then

ξ = x− Ut , η = y , ζ = z . (1.1)

Here, and elsewhere, I employ Latin letters (or sub-
scripts) to denote scalar components of vectors rel-
ative FL and Greek letters (or subscripts) to denote
scalar components of vectors relative FG. By the
same token let uL and uG denote the fluid velocity
vector relative to the frames FL and FG, respec-
tively. Similarly, let ∇G and curlG denote vector

differential operators, in which the spatial deriva-
tives are with respect to Greek letter positions co-
ordinates and let ∇L and curlL denote vector dif-
ferential operators in which the spatial derivatives
are with respect to Latin ones. Since FG translates
rectilinearly relative to FL in the direction of ı̂ with
constant speed U we have

uG = uL − U ı̂ . (1.2)

A closed contour in a subdomain is reducible if
one can, by a continuous deformation, shrink it to
a point without touching the boundary of that sub-
domain. A subdomain is simply-connected if every
closed contour in it is reducible. A constant-density
fluid is one whose mass density ρ is both uniform in
space and stationary in time.

Suppose that constant-density fluid fills an un-
bounded domain D = Db ∪ De, in which Db is a
bounded simply-connected subdomain and De is its
exterior. Then the only boundary of Db is its outer
edge ∂Db and the only boundary of De is its inner
edge (∂De)in. In Lamb’s example Db is a circular
disk of radius a centered on OG. Thus the points in
Db and on ∂Db satisfy the inequalities

ξ2+η2−a2 ≤ 0 or (x−Ut)2+y2−a2 ≤ 0 (1.3)

and the points in De and on (∂De)in satisfy the
inequalities

ξ2+η2−a2 ≥ 0 or (x−Ut)2+y2−a2 ≥ 0 . (1.4)

The absence of time in (1.3)1 and (1.4)1 suggests
that the use of the variables (ξ, η) as position coor-
dinates wherever possible will be convenient and I
will follow this approach in the sequel.

Consequences of the assumption of constant-

density. Given an oriented contour with continu-
ally turning tangent t̂ (in the direction of the ori-
entation) one can always construct a right-handed
set of mutually-orthogonal unit vectors {t̂, n̂, k̂}, in
which n̂ is the local normal to the contour. If C is
any reducible closed contour in either Db or De the
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constant-density assumption implies that the net
rate of transport of fluid volume (per unit depth)
across C must vanish, i.e.

∮

C

uG • n̂ dσ = 0 , (1.5)

in which (here and elsewhere) dσ is the length of a
typical small part of the contour in FG.

Now let Cnr be a closed contour with clockwise
orientation in De that encloses its inner boundary
once . Then Cnr is not reducible (which accounts
for the choice of subscript). If one could show that

∮

Cnr

uG • n̂ dσ = 0 (1.6)

for all choices of Cnr then that fact, together with
(1.5), would form the basis for an argument that
the integral of uG • n̂ dσ over an open contour be-
tween any two points, O and A, say, in either Db or
De is independent of the choice of path in between
and, thence, an argument that uG • n̂ dσ is an exact
differential.

To justify (1.6) observe that the constant den-
sity assumption ensures that one can deform Cnr

into (∂De)in without altering the value of the loop
integral. After this deformation the result is the rate
of transport of fluid volume (per unit depth) out of
Db into De across the interface between them. But
the rate of transport of fluid volume (per unit depth)
out ofDb is zero sinceDb is filled with constant den-
sity fluid, which completes the justification of (1.6).

Having argued that uG • n̂ dσ is an exact dif-
ferential let uG • n̂ dσ := dψG. A streamline is a
contour that is tangent at all of its points, to the
local velocity vector. If t̂ is the local unit tan-
gent vector on a streamline then t̂ = uG/∥uG∥
so dψG = ∥uG∥t̂ • n̂ dσ, whose right member van-
ishes since {t̂, n̂, k̂} is an orthonormal system. Thus
dψG = 0 between any two neighboring points on a
streamline. A streamline is therefore a contour of
constant ψG. Following custom I will call ψG the
stream function (relative to FG).

Moreover

dψG = uG • n̂ dσ = uG •(k̂× t̂) dσ = (uG× k̂) • t̂ dσ .
(1.7)

If one writes t̂ dσ = ı̂ dξ + ȷ̂dη then the outermost
equality in (1.7) becomes

dψG = (uG × k̂) •(̂ı dξ + ȷ̂dη) , (1.8)

or, upon expansion,

∂ψG

∂ξ
dξ +

∂ψG

∂η
dη = uηdξ + (−uξ)dη . (1.9)

If (1.9) is to hold for all combinations of the differ-
entials dξ and dη then (1.9) implies that

uξ = −
∂ψG

∂η
, uη =

∂ψG

∂ξ
. (1.10)

If one subtracts from (1.8) its counterpart in
FL, [namely dψL = (uL × k̂) •(̂ı dξ + ȷ̂dη)], one gets

d(ψG − ψL) = [(uG − uL)× k̂] •(̂ı dξ + ȷ̂dη) .

But (1.2) implies that uG − uL = −U ı̂ , so

d(ψG − ψL) = [(−U ı̂)× k̂] •(̂ı dξ + ȷ̂dη) = Udη

or
d(ψG − ψL − Uη) = 0 . (1.11)

The expression ψG − ψL −Uη must therefore equal
a constant. The symmetries of this problem sug-
gest that the ξ-axis should be a streamline in both
FG and FL. Consequently, the stream functions ψG

and ψL are both uniformly constant on that axis
and one may as well specify that they are both zero
there. Indeed, I assume that both ψG and ψL are
odd functions of η and periodic with respect to cir-
cuits about Cnr. The expression ψG−ψL−Uη must
therefore vanish on the ξ-axis and so, being a con-
stant, must vanish everywhere else. One thus arrives
at the transformation rule

ψG = ψL + Uη . (1.12)

In the sequel I will seek a solution for the stream
function that satisfies the homogeneous Dirichlet
condition

ψG = 0 on ∂Db . (1.13)

The solution I seek will also be continuous across
the interface Db ∩ De. Since ∂Db and (∂De)in are
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just the two sides of that interface the transforma-
tion rule (1.12) takes the the homogeneous Dirich-
let condition (1.13) for ψG to an inhomogeneous
Dirichlet condition for ψL, namely

ψL = −Uη on (∂De)in . (1.14)

2. Boundary-value problem in the sub-
domain of irrotational motion

Formulation and analytic solution. The vortic-
ity vector, ωL, whose definition in FL is

ωL := curlL(uL) , (2.1)

is a measure of the fluid spin, specifically twice the
local angular rotation rate vector of a fluid particle.
The motion is thus rotational if ωL ≠ 0 or irrota-
tional otherwise. Since FG does not spin relative to
FG the vorticities with respect to these frames must
be equal, i.e. ωG = ωL identically.

In the mean time the system (1.10) amounts to
a list of the scalar components of the vector equation
uG = curlG(−ψGk̂), whose counterpart in FL is

uL = curlL(−ψLk̂) . (2.2)

Under the present assumptions of two-dimen-
sionality and for the present choice of coordinate
axes one finds that two of the three scalar compo-
nents of the vector equation ωG = curlG(uG) [i.e.
the counterpart of (2.1) in FG] reduce to 0 = 0. The
remaining scalar component reads

ωζ =
∂uη

∂ξ
−
∂uξ

∂η
. (2.3)

Since the motion inDe is irrotational by assumption
ωζ must be uniformly zero there and (2.3) simpli-
fies accordingly. If one substitutes the representa-
tion (1.10) into the simplified form of (2.3) one gets
Laplace’s equation for ψG, namely

0 =
∂2ψG

∂ξ2
+
∂2ψG

∂η2
. (2.4)

Note, moreover, that the transformation rule (1.12)
takes (2.4) to Laplace’s equation for ψL, i.e.

0 =
∂2ψL

∂ξ2
+
∂2ψL

∂η2
. (2.5)

If one rewrites (2.5) with respect to the polar coor-
dinates (ϖ,ϑ) in accordance with the definitions

ξ = ϖ cosϑ , η = ϖ sinϑ (2.6)

and multiplies the result by ϖ2 one gets

ϖ
∂

∂ϖ

(

ϖ
∂ψL

∂ϖ

)

+
∂2ψL

∂ϑ2
= 0 . (2.7)

The expressions ln(ϖ/a) and ϑ are both solu-
tions of (2.7). As candidate solutions for ψG the so-
called line vortex ln(ϖ/a) fails the conditions that it
be an odd function of η and the so-called line source
ϑ fails the condition that it be periodic with respect
to circuits about Cnr. One concludes that ψL has
no contribution from either ln(ϖ/a) or ϑ.

Now (∂/∂η) ln(ϖ/a) is an odd function of η.
Moreover, (∂/∂η) ln(ϖ/a) = ϖ−1 sinϑ is a solu-
tion of (2.7), whose associated velocity as defined
by (2.2), tends to zero as ϖ → ∞. If one writes the
Dirichelt condition (1.14) in polar coordinates one
gets

(ψL)ϖ=a = −Ua sin θ . (2.8)

A constant multiple of the so-called line dipole
ϖ−1 sinϑ that satisfies (2.8) is

ψL = −U(a2/ϖ) sinϑ , (2.9)

which must therefore be the analytic solution of the
boundary-value problem for ψL in De. This result
agrees with Lamb’s [see equation (68.4) on page 76
of Ref. 1]. Note next that equations (2.6)2 and (2.9)
take the transformation rule (1.12) to

ψG = U(ϖ − a2/ϖ) sinϑ , (2.10)

which agrees with the corresponding result in Lamb
[see equation (68.10)2 on page 77 of Ref. 1].

COMSOL simulation. The main numerical chal-
lenge in the COMSOL simulation of the analyti-
cal solution (2.9) arises from the lack of an outer
boundary of De. The present approach to address-
ing this challenge begins with the observation that
the pair of equations (2.1), (2.2) is analogous to a
pair of equations that appear in the vector state-
ment of Ampère’s law of electromagnetism. COM-
SOL’s AC/DC module supports Infinite Elements
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and the present method for simulating the analytic
solution (2.9) exploits this fact.

COMSOL’s AC/DC module supports the Mag-
netic Fields (mf) Physics Interface. The first
domain-level node under that Physics Interface is
titled Ampère’s law. In the Settings window be-
longing to this node under Equation one finds a list
of three equations the first two of which are

curlH = J , (2.11)

B = curlA . (2.12)

In the Hydrodynamic-Electromagnetic analogy I
take the operator curl in the equations of Electro-
magnetism as a synonym for the operator curlG in
the corresponding Hydrodynamic problem. I also
take the position coordinates (x, y) in the equa-
tions of Electromagnetism as synonyms for the co-
ordinates (ξ, η) in the corresponding hydrodynamic
problem. Further down in the same Settings win-
dow, under the heading Magnetic Field, the de-
fault Constitutive Relation is Relative Permeability,
where one finds the equation

B = µ0µrH , (2.13)

in which constant values of µ0 and µr are permissi-
ble as a special case. If one multiplies (2.11) by µ0µr

and eliminates H from the left member by means of
(2.13) one obtains

curlB = µ0µrJ . (2.14)

One may now construct a set of transformation for-
mulas that take the the appropriate special case of
the system (2.14), (2.12) to the system (2.1), (2.2),
respectively. The appropriate special case of the
magnetic potential vector A in the present two-
dimensional problem is A = Azk̂, so (2.12) becomes

B = curl (Azk̂) . (2.15)

LetBs be a scalar constant having the same physical
dimensions as the magnetic flux density B. If one
multiplies (2.14) and (2.15) by the common constant
U/Bs these equations are equivalent, respectively,
to

U

Bs
µ0µrJ = curl

(

U

Bs
B

)

. (2.16)

and
U

Bs
B = curl

(

U

Bs
Azk̂

)

. (2.17)

The system (2.1), (2.2) is now identical to the sys-
tem (2.16), (2.17) under the transformation rules

ωL =
U

Bs
µ0µrJ , uL =

U

Bs
B , −ψL =

U

Bs
Az .

(2.18)

COMSOL’s Magnetic Fields (mf) Physics In-
terface identifies the components of A as the de-
pendent variables and allows the user to introduce
a domain-level node titled External Current Den-
sity for specification of a given distribution of J.
There is an Application available within COMSOL
via the path File > Application Libraries > AC/DC
Module > Verification Examples > parallel wires
(Application ID: 131), which illustrates the pro-
cedure (including the use of an Infinite Element).
In the present example of irrotational fluid motion
ωL = 0. According to (2.18)1 the special case
ωL = 0 implies that J = 0, so the electromagnetic
analog of irrotational motion is current-free.

A COMSOL simulation of the analytic solution
(2.9) [of the field equation (2.7)] must satisfy the
far-field condition

ψL → 0 as ϖ → ∞ . (2.19)

The transformation rule (2.18)3 takes (2.19) to

Az → 0 as x2 + y2 → ∞ . (2.20)

One may implement (2.20) in COMSOL by means
of a Magnetic Insulation boundary condition at the
outer edge of COMSOL’s proxy for the Infinite El-
ement. Equation (2.18)3 also takes the Dirichlet
condition (1.14) to

Az = Bsy on x2 + y2 = a2 , (2.21)

which one may implement in COMSOL by means
of a Magnetic Potential boundary condition.

In the simulations reported below I set Bs to
1 [Wb/m2] and U to 1 [m/s] in the list of Global
Parameters.

Under the heading Discretization I chose Cubic
for the shape order. I also selected a User-controlled
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mesh. In the Size node under Mesh I chose Fluid
Dynamics > Finer. Fig. 2.1 illustrates the result of
COMSOL’s calculation of the Az–field in De.

I introduced a COMSOL Variable Definition,
whose scope is the annulus a ≤ r ≤ 2a, that ex-
presses ψL in terms of the solution for Az in accor-
dance with the transformation rule (2.18)3. Having

Fig. 2.1. Magnetic potential Az exterior to disk of radius
a centered at the origin governed by the current-free form

of the field equations (2.12) & (2.14) and subject to the

boundary conditions (2.20) and (2.21). The range (for
both colors and contours) is −1Wb/m2(blue) ≤ Az ≤

1Wb/m2(red) and the increment between contours is 0.1
Wb/m2 . The subdomain outside the large white circle is

COMSOL’s proxy for an Infinite Element.

ψL, I introduced a COMSOL Variable Definition,
whose scope is again the annulus a ≤ r ≤ 2a,
that defines ψG in accordance with (1.12). Fig. 2.2
nearby illustrates the result, which is equivalent to
the corresponding figure in Lamb [see page 78 of
Ref. 1]

3. Boundary-value problem in the sub-
domain of rotational motion

Lamb’s analytic solution. A fluid is barotropic
if the mass density ρ depends only on the pressure
p. The case when ρ is a constant-valued function of

Fig. 2.2. COMSOL simulation of the stream function ψG

in De. The range is −1.5Ua ≤ ψG ≤ 1.5Ua for for both

colors and contours and the increment between contours
is 0.15Ua.

p is a special case of a barotropic fluid. If a fluid
is inviscid and barotropic one may show that the
vorticy ωG satisfies the equation

∂

∂t

(

ωG

ρ

)

+uG •∇

(

ωG

ρ

)

=

(

ωG

ρ

)

•∇uG . (3.1)

[see, e.g., equation (146.4) on page 205 of Ref. 1
and its justification on pp 205–206]. The assump-
tion of constant density enables one to simplify
(3.1) by cancelling the common factor ρ. Further-
more, under the assumption of two-dimensionality,
ωG = ωζ k̂ and uG does not vary in the direction of

k̂, so the right member of (3.1) vanishes, and (3.1)
simplifies again. In the mean time the time deriva-
tive term in (3.1) vanishes owing to the assumption
that the motion in FG is stationary, which yields
a third simplification of (3.1). The one nontrivial
component of (3.1) resulting from these three sim-
plifications is

uξ
∂ωζ

∂ξ
+ uη

∂ωζ

∂η
= 0 . (3.2)

Equations (1.10) take (3.2) to

−
∂ψG

∂η

∂ωζ

∂ξ
+
∂ψG

∂ξ

∂ωζ

∂η
:=

∂(ψG,ωζ)

∂(ξ, η)
= 0 . (3.3)
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The vanishing of the Jacobian of the functions
(ξ, η) ,→ ψG and (ξ, η) ,→ ωζ implies that there is a
function ψ ,→ f(ψG) such that

ωζ = f(ψG) . (3.4)

Now (2.3) takes (3.4) to ∂uη/∂ξ−∂uξ/∂η = f(ψG),
or, in view of (1.10)

∂2ψG

∂ξ2
+
∂2ψG

∂η2
= f(ψG) . (3.5)

Lamb considered the case f(ψG) = −k2ψG, in
which k is a real constant with the dimensions of
(length)−2(see page 245 of Ref. 1). Thus (3.5) be-
comes the two-dimensional Helmholtz equation,

∂2ψG

∂ξ2
+
∂2ψG

∂η2
+ k2ψG = 0 , (3.6)

A two-part representation of ψG that satisfies (2.4)
in De and (3.6) in Db will be physically meaningful
only if satisfies the two continuity conditions

(ψG)ϖ=a− = (ψG)ϖ=a+ , (3.7)

(∂ψG/∂ϖ)ϖ=a− = (∂ψG/∂ϖ)ϖ=a+ . (3.8)

The right member of (3.7) vanishes by (1.13) so ψG

in Db is subject to the homogenousDirichlet con-
dition

(ψG)ϖ=a− = 0 . (3.9)

The trivial solution ψG = 0 in Db satisfies both the
homogeneous differential equation (3.6) and the ho-
mogeneous boundary condition (3.9) for all choices
of the parameter k. Nontrivial solutions of the
homogeneous boundary-value problem are possible
only for special values of the parameter k, i.e. eigen-
values. A nontrivial solution of the homogeneous
boundary-value problem belonging to a particular
eigenvalue is an eigenfunction. Multiplication of an
eigenfunction by a nonzero constant yields another
eigenfunction. An eigenfunction is thus not unique.
One can make it unique only by specifying a nor-
malization.

Now (3.8) is an identity that is to hold for all
choices of ϑ and would thus appear to specify more
than a mere normalization. The condition (3.8)
does, however, reduce to a normalization provided
the left and right members depend upon ϑ through

a common multiplicative factor. Equation (2.10)
shows that the right member of (3.8) depends upon
ϑ through the factor sinϑ so (3.8) will reduce to a
normalization only if the left member does likewise.

If one rewrites (3.6) in polar coordinates in ac-
cordance with the the definitions (2.6) and multi-
plies the result by ϖ2 one gets

ϖ
∂

∂ϖ

(

ϖ
∂ψG

∂ϖ

)

+
∂2ψG

∂ϑ2
+ k2ϖ2ψG = 0 . (3.10)

The definition of the nondimensional independent
variable w := kϖ takes (3.10) to

w
∂

∂w

(

w
∂ψG

∂w

)

+
∂2ψG

∂ϑ2
+ w2ψG = 0 . (3.11)

If one substitutes trial solution proportional to
W (w) sin ϑ into (3.11) one finds, upon cancellation
of the common factor sinϑ and rearrangement that
W satisfies

w
d

dw

(

w
dW

dw

)

+ (w2 − 1)W = 0 , (3.12)

which is the Bessel equation of order 1. The
Bessel functions J1(w) and Y1(w) constitute a lin-
early independent pair of solutions of (3.12). A suit-
able solution for ψG in Db is free of singularities. In
the mean time the Bessel function Y1(w) is singular
at the origin. If one recalls that w = kϖ one con-
cludes that the only trial solution of (3.10) in Db

that is reconcilable with (3.8) is of the form

ψG = CJ1(kϖ) sin ϑ , (3.13)

in which C is a constant. Equations (2.10) and
(3.13) take equations (3.7) and (3.8) to

J1(ka) = 0 , (3.14)

CJ ′(ka)k = 2U . (3.15)

after division by the factors C sinϑ and sinϑ, re-
spectively. One can eliminate J ′(ka) in the left
member of (3.15) by application of an identity that
holds for Bessel functions of integer order, namely
J ′

n(w) = Jn−1(w) − (n/w)Jn(w) [e.g. equation (D)
on page 360 of Ref. 2]. Substitution of n = 1 and
w = kϑ into this identity followed by application of
(3.14) leads to the result C = 2U/[kJ0(ka)] [which
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appears with a sign error in equation (165.12) on
page 245 of Ref. 1]. If one keeps five decimal places
the smallest nonzero value of ka compatible with
(3.14) is ka = 3.83171 [Ref. 3, page 409], which de-
termines the eigenvalue k in the present problem.

COMSOL simulation COMSOL generated the
results in Figs. 2.1 & 2.2 by means of a Station-
ary Study Step. I introduced a second Study Step
via the path Study > Study Steps > Eigenfrequency
> Eigenvalue. I also introduced second Physics In-
terface via the path Mathematics > Classical PDEs
> Helmholtz equation (hzeq).

COMSOL reserves a special name for the eigen-
value, namely lambda. I set k to the equivalent of
lambda/a. To ensure compatibility with the scale of
the exterior motion and COMSOL’s normalizaton I
renormalized the eigenfunction so as to equate the
integral of the tangential component of the fluid ve-
locity over the semicircleϖ = a, 0 ≤ ϑ ≤ π as calcu-
lated from the solutions in the interior and exterior
domains. Although the integrals with respect to arc-
length of the curves of uG • t̂/U on the inside and
outside of the interface between Du andDp agree by
construction I introduced no conditions that ensure
that these two curves coincide uniformly. Be that as
it may Fig. 3.1 shows that they do, thus confirming

Fig. 3.1. COMSOL simulation of nondimensional tan-
gential velocity uG • t̂/U versus polar angle ϑ on the up-

per sides of (∂De)in (black line) and ∂Db (red circles).

The polar angle ϑ (in radians) is zero at (ξ, η) = (a, 0)
and increases counter-clockwise.

the absence of slip across the interface. The shape
of the curve corresponds, of course, to the common
factor sinϑ in the left and right members of the

continuity condition (3.8). Fig. 3.2 illustrates the
distributions of vorticity (colors) and stream func-
tion (contours) for the bounded subregion of the
flow plane.

Fig. 3.2. COMSOL simulation of the vorticity ωζ (color)

and stream function ψG (contours). The range for ψG is
from -1.5 m2/s to +1.5 m2/s and the increment between

contours is 0.15 m2/s. The motionin the far field is from

right to left. The value of ωζ within Db is −k2ψG, in
which COMSOL’s result for the eigenvalue ka is 3.8317.

The agreement between COMSOL’s calculation of
the eigenvalue (3.8317) and the handbook value
(3.83171) is excellent. The corresponding figure for
Lamb’s analytical solution is graphically indistin-
guishable from Fig. 3.2.
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