Application of an Electromagnetic Analogy in the Simulation of a Problem in Classical Hydrodynamics

JOHN M. RUSSELL, Professor Emeritus Florida Inst. of Technology, Melbourne, Florida COMSOL Conference, Boston, October 3, 2019

Objective

Use COMSOL to simulate a traveling vortex structure in an unbounded domain in a case where an analytic solution^{*} is available

* LAMB, SIR HORACE *Hydrodynamics*. Sixth edition, Cambridge University Press 1932, p 245

STREAMLINES RELATIVE TO FRAMES \mathcal{F}_G (UPPER) AND \mathcal{F}_L (LOWER)

ASSUMPTIONS

Motion is two-dimensional: velocity vector (\mathbf{u}_L or \mathbf{u}_G) everywhere parallel to a plane \mathcal{P} ;

Fluid is inviscid, incompressible and of uniform density, $\rho;$

Fluid at rest relative to \mathcal{F}_L at large distances from moving structure

Motion stationary relative to \mathcal{F}_G .

PARTITION INTO SUBDOMAINS

- $\mathcal{D} = \mathcal{D}_b \cup \mathcal{D}_e$, in which:
- \mathcal{D}_b is a bounded (simply connected) subdomain that contains the vortex structure;
- \mathcal{D}_e is the unbounded (doubly connected) exterior of \mathcal{D}_b (in which the motion is irrotational).

LAMB'S ANALYTIC SOLUTION IN \mathcal{D}_e , I We have

$$\underbrace{\frac{\partial u_{\xi}}{\partial \xi} + \frac{\partial u_{\eta}}{\partial \eta} = 0}_{\text{incompressibility}}, \underbrace{\frac{\partial u_{\eta}}{\partial \xi} - \frac{\partial u_{\xi}}{\partial \eta} = 0}_{\text{irrotationality}}.$$

The representation

$$u_{\xi} = -\partial \psi_G / \partial \eta \quad , \quad u_{\eta} = \partial \psi_G / \partial \xi \qquad (A)_{1,2}$$

satisfies incompressibility provided $(\xi, \eta) \mapsto \psi_G$ is single valued and twice differentiable in \mathcal{D}_e . Note that $(A)_{1,2}$ takes irrotationality to LAPLACE's equation, $\partial^2 \psi_G / \partial \xi^2 + \partial^2 \psi_G / \partial \eta^2 = 0$.

LAMB'S ANALYTIC SOLUTION IN \mathcal{D}_e , II

Example 1. If U is a positive constant then $\psi_G = U\eta$ is a solution of LAPLACE's equation that corresponds to a uniform stream of speed U in the negative ξ direction

Example 2. If one defines the polar coordinates (ϖ, ϑ) by $\xi = \varpi \cos \vartheta$, $\eta = \varpi \sin \vartheta$ then one can arrange LAPLACE's equation for ψ_G in the form

 $\varpi(\partial/\partial\varpi)[\varpi(\partial\psi_G/\partial\varpi)] + \partial^2\psi_G/\partial\vartheta^2 = 0 ,$

of which $\psi_L = U(a^2/\varpi) \sin \vartheta$ is a solution, namely the solution relative to \mathcal{F}_L (*a* is a constant length). LAMB'S ANALYTIC SOLUTION IN \mathcal{D}_e , III Example 3. The superposition of the solutions in Examples 1 and 2, namely

$$\psi_G = U(\varpi - a^2/\varpi) \sin \vartheta \; ,$$

represents the irrotational flow past a circular cylinder and is the solution relative to \mathcal{F}_G .

LAMB'S ANALYTIC SOLUTION IN \mathcal{D}_b , I The assumption that the motion be stationary relative to \mathcal{F}_G leads to the requirement that the vorticity $\omega_{\zeta} := \partial u_n / \partial \xi - \partial u_{\xi} / \partial \eta =$ $\partial^2 \psi_G / \partial \xi^2 + \partial^2 \psi_G / \partial \eta^2$ be constant along every streamline. But the streamlines are contours of constant ψ_G so there must be a function f such that $\partial^2 \psi_G / \partial \xi^2 + \partial^2 \psi_G / \partial \eta^2 = f(\psi_G)$. LAMB considered the example $f(\psi_G) = -k^2 \psi_G$ (for constant k), which leads to the HELMHOLTZ equation

$$\partial^2 \psi_G / \partial \xi^2 + \partial^2 \psi_G / \partial \eta^2 + k^2 \psi_G = 0$$
.

LAMB'S ANALYTIC SOLUTION IN \mathcal{D}_b , II If one multiplies the-polar coordinate form of the HELMHOLTZ equation by ϖ^2 and defines $k\varpi = w$ one gets

 $w(\partial/\partial w)[(w(\partial\psi_G/\partial w)] + \partial^2\psi_G/\partial\vartheta^2 + w^2\psi_G = 0,$

of which a trial solution of the form $\psi_G \propto W(w)\sin(\vartheta)$ is possible provided

 $w(d/dw)[w(dW/dw)] + (w^2 - 1)W = 0, \quad (A)$

which is the BESSEL equation of order 1. The BESSEL function of the first kind, $J_1(w)$ satisfies (A) and is regular at w = 0.

LAMB'S ANALYTIC SOLUTION IN \mathcal{D}_b , III

The solution $CJ_1(k\varpi)\sin(\vartheta)$ for ψ_G in \mathcal{D}_b (C is a constant) can be continuous with the solution $U(\varpi - a^2/\varpi) \sin \vartheta$ for ψ_G in \mathcal{D}_e only if they agree at the interface, $\varpi = a$. But the solution in \mathcal{D}_e vanishes for all ϑ on that interface so the solution in \mathcal{D}_b must as well. Therefore $J_1(ka) =$ 0, the lowest nontrivial root of which is ka =3.83171. The ϖ -derivatives of these solutions must also agree on the interface. By appeal to BESSEL function identities LAMB showed that $C = 2U/[kJ_0(ka)].$

ELECTROMAGNETIC ANALOGY, I LAMB's equations in vector form, *i.e.*

$$\underbrace{\boldsymbol{\omega}_L := \operatorname{curl}_L(\mathbf{u}_L)}_{\text{definition of vorticity from incompressibility}}, \underbrace{\mathbf{u}_L = \operatorname{curl}_L(-\psi_L \hat{\mathbf{k}})}_{\text{resemble those of AMPÈRE's law, i.e.},$$

 $\mathbf{J} = \operatorname{curl} \mathbf{H} \quad , \quad \mathbf{B} = \operatorname{curl} \mathbf{A} \; ,$

especially when $\mathbf{A} = A_z \mathbf{\hat{k}}$ (as in 2D) and when one can apply the constitutive equation

$$\mu_0 \mu_r \mathbf{H} = \mathbf{B}$$

ELECTROMAGNETIC ANALOGY, II

The foregoing hydrodynamic and electromagnetic equations are equivalent under the transformation rule

$$\boldsymbol{\omega}_L = \frac{U}{B_s} \mu_0 \mu_r \mathbf{J} \ , \ \mathbf{u}_L = \frac{U}{B_s} \mathbf{B} \ , \ -\psi_L = \frac{U}{B_s} A_z \ ,$$

in which B_s is a constant scale for the magnetic flux density. For irrotational motion $\boldsymbol{\omega}_G = \mathbf{0}$, which corresponds to the case, $\mathbf{J} = \mathbf{0}$. Similarly, the boundary conditions for ψ_L transform to boundary conditions for A_z .

Magnetic potential A_z as seen in \mathcal{F}_L .

Stream function $\psi_G = \psi_L + U\eta$ as seen in \mathcal{F}_G .

Nondimensional tangential velocity $\mathbf{u}_G \cdot \hat{\mathbf{t}}/U$ versus polar angle ϑ on the inside (red circles) and outside (black line) of (upper half of) $\mathcal{D}_e \cap \mathcal{D}_b$ as seen in \mathcal{F}_G .

Vorticity ω_{ζ} (color) and stream function ψ_G . COMSOL's result for the eigenvalue ka is 3.8317 (contours) as seen in \mathcal{F}_G