

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

Analysis of Micromixers to Minimize Scaling Effects on Reverse Osmosis Membranes

Jeremy Walker, PhD

Research Civil Engineer

Force Projection Technology

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

- I. Membrane Fouling
- II. Research Aims
 - A. CFD modeling
 - B. Direct Print Micromixers

Membrane fouling

(TARDEC 1998)

(Feng et al. 2006)

Feed channel velocities

Low flow zones with eddy formations created at filament contact points (Amokrane et al. 2015)

> 0.3 m/s non-recirculating zone

Research Aim 1

Hypothesis 1: Optimized microstructure design and patterning will maximize the area of enhanced velocity (0.2 - 0.3 m/s) and minimize velocities associated with fouling (<0.1 m/s, >0.3 m/s).

Equation 1 $\nabla u = 0$ Continuity

Equation 2 $\rho u * \nabla u + \nabla p = \eta \nabla^2 u$ Navier-Stokes

(ρ is density (kg/m³), u is the velocity vector (m/s), η the viscosity (Ns/m) and p is pressure (Pa))

Model conditions: Inlet velocity set to 0.104 m/s Outlet pressure set to 20.7 bar Microstructures and side walls were defined as no slip

Variables evaluated:

Angle (A)

• 60, 90, and 120 degrees

Pattern

- Offset and continuous
- Gap Length (L_g) between chevrons
 - 0.75 mm, 5.75 mm, and 10.75 mm

Chevron Length (L_c) of chevron

• 3 mm, 4mm, and 5 mm

Base micromixer:

- A = 90 degree chevron
- offset pattern
- L_c= 3mm chevron lengths
- Width of chevron (W) = 0.01 mm
- L_g = 5.75 mm gap

Unit area of quantification

8

Range **COMSOL** image ImageJ Pixel % Area DÉVCOM No flow 1.6 232 9455 - 23223.5 - 1.6 =0-0.1 m/s = 21.9 9223 Percent 13394 area 32.8 - 1.6 =0.1–0.2 m/s 232 = calculation 31.2 13162 for the 90 16491 degree 40.8 - 1.6 =0.2 - 0.3 m/s232 = angle 39.2 16259 38332 -All 95.4 - 1.6 =232 = velocities 93.7 38100 Chevron 6.3 2159 only DISTRIBUTION A. See first page

A 0.1

Angle influences the amount of open channel flow and velocity regions

Flow left to right

The 90 degree geometry showed maximum coverage of enhanced flow conditions

Areas shown enhanced zone (0.2-0.3 m/s)

V 0

90 degree geometry provides optimal conditions across all flow velocities

Offset base pattern: 3mm chevron length, and 5.75 mm gap

DISTRIBUTION A. See first page

Optimal design was 90 degree geometry with offset pattern

	Velocity Profile				
	(m/s)				
				Non-recirculating	Sum of Fouling
	No/low flow zone	Unimproved zone	Enhanced zone	zone	Zones
	0 to 0.1	0.1 to 0.2	0.2 to 0.3	>0.3	0 to 0.1 and > .3
60 degree offset	19.2	46.7	25.6	0.0	19.2
90 degree offset	21.9	31.2	39.2	0.0	21.9
120 degree offset	26.0	41.7	25.4	0.0	26.0
60 degree continuous	31.9	50.9	15.3	0.0	31.9
90 degree continuous	37.7	35.5	24.0	0.0	37.7
120 degree continuous	38.9	26.7	29.6	3.5	42.4
Gap 0.75 mm	33.4	31.0	9.5	9.1	42.5
Gap 10.75 mm	21.1	47.7	25.2	0.0	21.1
4 mm length	24.2	27.6	35.7	4.0	32.2
5mm length	25.8	18.2	24.3	23.6	49.4

Research Aim 1: Conclusions

Hypothesis 1: Optimized microstructure design and patterning will maximize the area of enhanced velocity (0.2 - 0.3 m/s) and minimize velocities associated with fouling (<0.1 m/s, >0.3 m/s).

- Angle: 90 degree chevron
- Pattern: Offset
- Gap Length: 5.75mm
- Chevron Length: 3mm

Research Aim 2

3-Dimensional printing of micromixers onto a membrane and fluorescent beads to experimentally validate modeling

Printing Directly on the Membrane

Modified 3D Printer:

UV curable epoxy, UV15TK (Masterbond)

DISTRIBUTION A. See first page

 \wedge $\wedge \wedge$ \wedge \wedge \wedge

🔛 🚱 Individual chevron characterized 💷

500 micron height

Fluorescence imaging of 2µm green beads was used to support model results

Forward flow

Flow left to right

🙀 🚯 Visual flow profile at front of chevron 🕞 Калан

VISUAL FLOW PROFILE OF CHEVRON

Research Aim 2: Conclusions

 Successfully printed on the membrane surface without intrinsic properties of membrane being damaged

• Visual observations were consistent with fluid flow profile from computational modeling

QUESTIONS ?

DISTRIBUTION A. See first page