

Engineering Through The Fundamentals

Mixing Considerations in Chemical Reactor Scale-Up

Andrew Fiore, Ph.D. Andrew Spann, Ph.D. Nagi Elabbasi, Ph.D.

contact@veryst.com www.veryst.com

Scale-up In Chemical Reactors

- Scaling chemical reactors from lab scale to pilot scale to production scale requires a detailed understanding of the physical system
 - Coupled heat transfer, mass transfer, reaction kinetics, fluid flow
- Chemical reactor scale-up considerations
 - Geometric similarity
 - Ratio of surface area to volume
 - Energy input, generation, and removal rates
 - Rate-limiting transport processes
 - Mixing efficiency

Mixing in Chemical Reactions

 Two ideal reactor models are often used to illustrate the importance of mixing on reaction yield and selectivity

Continuously Stirred Tank Reactor (CSTR) – complete mixing (uniform concentration everywhere)

Plug Flow Reactor (PFR) – zero axial mixing (spatially varying concentration)

 More complicated mixing models can be developed from combinations of these simple models

Mixing in Chemical Reactions

 The Van de Vusse reaction system demonstrates the reactor design tradeoffs inherent in the simple PFR and CSTR models

$$\begin{cases} A \stackrel{k_1}{\to} B \stackrel{k_2}{\to} C \\ A + A \stackrel{k_3}{\to} D \end{cases}$$

B is the desired product *C* and *D* are undesired byproducts

Region	Highest Yield of <i>B</i>	Highest Selectivity
Ι	CSTR	CSTR
II	PFR	CSTR
III	PFR	Either

Van de Vusse, Chem. Eng. Sci., 1964

10/11/2019

Non-Ideal Mixing – Turbulence

- Ideal mixing models (PFR, CSTR) may not be valid at larger scales, and are unlikely to be useful approximations for complicated reactor schemes
- Non-ideal mixing is controlled by fluid mechanics within the reactor and is often quantified using a residence time distribution
 - Dead zones
 - Short-circuits
 - Recirculation regions
- Turbulence changes the flow pattern within the reactor
- Turbulence can affect mixing without significantly modifying the residence time distribution

Adapted from Figure 13.3 (Fogler, 2010)

10/11/2019

How Turbulence Affects Mixing

- Turbulence increases mixing through eddies and vortices the chaotic motion in turbulent flows causes dissolved species to effectively diffuse far more quickly than by molecular diffusion alone
- Example: Reaction in a shear flow (Breidenthal, *J. Fluid Mech.*, 1981)
 - Fast fluid is light grey; slow fluid is medium grey; reaction product is dark grey

How Turbulence Affects Mixing

- Turbulence increases mixing through eddies and vortices the chaotic motion in turbulent flows causes dissolved species to effectively diffuse far more quickly than by molecular diffusion alone
- Example: Reaction in a shear flow (Koochesfahani and Dimotakis, *J. Fluid Mech.*, 1986)
 - Fast fluid is dark blue; slow fluid is red; intermediate colors indicate reactant products

A Model Reactor Setup for Mixing Studies

- To model the effect of turbulent mixing on the chemical reaction, we use a multi-inlet tubular reactor, shown at right (top)
 - Different reactants enter the reactor through alternating inlets, indicated by the surfaces highlighted in blue
- The reactor has two planes of symmetry, so we model only one-quarter of the reactor, shown at right (bottom)

Yield in Bimolecular Reactions

- We start by considering a simple bimolecular reaction: $A + B \xrightarrow{k_1} C$
- The yield of species C is shown below as a function of dimensionless distance along the reactor

Implications in Reactor Design and Scale-up

 The residence time required to achieve 80% conversion of the product decreases with increasing Reynolds number, and is much lower for turbulent flows than laminar ones, as highlighted in the table below

$Re = \frac{UL}{v}$	$Da = k_1 A_0 \left(\frac{L}{U}\right)$
1.0×10^{2}	230.2
5.4×10^{3}	127.3
5.4×10^{5}	90.6
5.4×10^{7}	59.0

In the table above, the Damkohler number, *D*a, provides the desired reactor size

Yield in Bimolecular Reactions with Product Decomposition

 Suppose that the original bimolecular reaction is accompanied by decomposition of the product to an undesired byproduct

 $A + B \xrightarrow{k_1} C$

 $C \xrightarrow{k_2} D$

 The yield (left) and selectivity (right) of species C is shown below as a function of dimensionless distance along the reactor

Implications in Reactor Design and Scale-up

 The reactor size for optimal yield at each Reynolds number is summarized in the table below

Summary

- Chemical reactor scale-up is a complex problem involving detailed understanding of fundamental physics
- Simulations are a useful tool to understand how physics change with scale
- Mixing and turbulence affect the yield of chemical reactions, even in geometrically similar reactors
- Multiphysics simulations using COMSOL can be used to optimize reactor designs at scale

Summary

- At Veryst, we combine insight into fundamental physics of chemical reactors with computational models to help our clients solve reactor scale-up problems, including
 - Stirred tank reactors
 - Packed bed reactors
 - Flow reactors (laminar flow, plug flow)
 - Microreactors

References

- Broadwell, J.E. and Breidenthal, R.E., 1981. Structure in turbulent mixing layers and wakes using a chemical reaction. *Journal of Fluid Mechanics*, *109*, pp.1-24.
- Koochesfahani, M.M. and Dimotakis, P.E., 1986. Mixing and chemical reactions in a turbulent liquid mixing layer. *Journal of Fluid Mechanics*, *170*, pp.83-112.
- Fogler, H.S., 2010. Essentials of Chemical Reaction Engineering. Pearson Education.
- Van de Vusse, J.G., 1964. Plug-flow type reactor versus tank reactor. *Chemical Engineering Science*, *19*(12), pp.994-996.