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Abstract:  
Pumping tests are the major field experiments within the toolbox of a hydrogeologist. The evaluation of the tests 
depends on specific and local groundwater conditions. Mostly these cannot be considered by common evaluation 
methods, which are based on 1D analytical solutions. 2D numerical models offer the chance to overcome this 
obstacle. Simulations using COMSOL Multiphysics are set up and performed for fully and partially penetrating 
wells in confined, leaky and unconfined aquifers. We compare numerical with analytical solutions of Theis and 
Hantush. The simulations can easily be extended to include anisotropy, general boundary conditions, skin zone 
effects etc. In connection with an optimization module such simulation models may become a more flexible and 
reliable tool for hydrogeologists.    
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1. Introduction 
In a pumping test the drawdown of the groundwater water table is recorded in response to the start of operating a 
pump in a well. The drawdown delivers clue data for the determination of characteristic aquifer properties. For 
hydrogeologists pumping tests are the most common method to obtain values for the transmissivity and 
storativity of an aquifer (Kruseman & de Ridder 1990). For the evaluation of pumping tests it is common 
practice to compare field measurements with 1D analytical solutions of the relevant differential equation. The 
1D solutions are derived assuming idealized conditions. Numerical methods offer the chance to check how far 
1D solutions fail if assumptions for local conditions and 1-dimensionality are not fulfilled.  

Major aim of the study is to find the error of the analytical solutions in cases of non-ideal situations, i.e. 
when the well-screen is not penetrating the entire aquifer. Moreover we deal with times immediately after 
pumping start, with short distances between pumping and observation wells and with unconfined aquifers. The 
results of the comparison provide important information, under which conditions the common evaluation 
methods are appropriate and when they are not.  

Yeh & Chang (2013) give an overview on recent advances in the modelling of well hydraulics. Huang et al. 
(2015) provide a categorization of solutions for the constant-flux pumping in confined aquifers. They describe 
analytical as well as numerical approaches. Our numerical model represents a 2D vertical cross-section of the 
aquifer. We are using 2D cylinder coordinates r (radial) and z (vertical) with the centre of the pumping well as 
symmetry axis. The differential equation for hydraulic head h in a vertical cross-section of an aquifer is given by  
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(Yeh & Chang 2013), where Ss denotes the specific storativity, Kh the horizontal and Kv the vertical hydraulic 
conductivity. Equation (1) is derived from the fluid mass conservation principle and Darcy’s Law for porous 
media flow. If the variable of hydraulic head h is replaced by drawdown s=h0-h, where h0 denotes the initial 
state, one obtains: 
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(Chang et al. 2011). In case of an unconfined aquifer equation (1) is valid for z<h(r,t), if h is measured with 
reference to the base of the aquifer. This formulation is utilized in the set-up of the model for the unconfined 
case with a changing model region due to a free boundary on the top.    

For a homogeneous isotropic aquifer with  K = Kh = Kv  and constant thickness H equation (2) can be 
modified to:  
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where  T = K ⋅H  denotes aquifer transmissivity and  S = Ss ⋅H  the storativity of the aquifer. For the derivation 
of an 1D analytical solutions it is assumed that the vertical velocity components and thus the corresponding 
gradients in equation (3) can be neglected. Then the solution  
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describes drawdown in the vicinity of an ideal well in a confined aquifer. Q denotes the pumping rate. Equation 
(4) is mostly referred to as Theis solution (Theis 1937). It describes drawdown s as a function of the radial 
distance to the well centre-line r and time t and is expressed by the function W(u), which among hydro-
geologists is known as well-function. In mathematics it is referred to as exponential integral, defined by: 
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The variable   u = Sr 2 / 4Tt  combines both space and time variables with the parameters storativity S and the 
transmissivity T. Using equation (5) the derivative of solution (4) can be evaluated easily, leading to the 
proportionality relation 
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According to relation (6) the gradient   ∂s / ∂r  that is related to the outflow velocity and the pumping rate, 
vanishes at time t=0. The pumping rate represented by solution (4) is thus not a constant, but rises gradually 
from zero to a final finite value. For times immediate after pump start we can thus not expect a correspondence 
between solution (4) and a real pumping test, which operates with a constant pumping rate from the start. Also a 
numerical solution for a test with constant pumping rate from the very start will not reproduce the 1D analytical 
solution for small simulation times. 

For semi-confined leaky aquifers the formula (4) has to be extended:  
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with  λ = Tc , where c denotes the leakance time of the overlying semi-permeable layer (Hantush 1964), and 
W(u,µ) the Hantush wellfunction, defined by: 
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Formula (7) was derived using a source term in the differential equation (3) (Hantush & Jacob 1955). Using 
the more realistic boundary condition at the top of the modelled cross-section Hantush (1967) showed 
conditions, under which solution (7) can be taken as a valid approximation. In the numerical evaluation of 
equation (8) I follow Maas & Veling (2010). The proposed numerical computation of the Hantush well-function 
is implemented as a MATLAB function that is called by COMSOL Multiphysics via the direct link. 

In case of partial penetration the behaviour of the aquifer will differ from the analytical solutions, if 2D 
effects come into play. More specifically: vertical velocity components, that are assumed to be zero in the 
derivation of the analytical solutions, may not be negligible anymore. The deviation from the analytical solution 
is most severe in the vicinity of the well. It is commonly accepted that the radial distance from the well should be 
larger than half of the aquifer thickness (Kono & Nishigaki 1978). However, this condition may not be fulfilled 
in many pumping tests, as the observations are placed near the pumping well in order to observe significant 
drawdown in short times. For that reason I examine observation points near to the pumping well.     
 
2. Model Set-up 
In COMSOL we use the Darcy mode for porous media flow. Note that in COMSOL the pressure is used as 
dependent variable instead of the hydraulic head. In case of an unconfined aquifer the model is complemented by 
the arbitrary Lagrangian Eulerian mode in order to account for the changing water table. The free boundary 
changes due to the moving mesh. A corresponding approach was presented by Jin et al. (2012, 2014).  

The initial model region is a rectangle with aquifer thickness as height H and the reach of the well as length 
L. The sketch in Figure 1 illustrates the set-up and boundary conditions. A filter that extends from the top to the 
bottom of the aquifer characterizes an ideal well. Most wells are not ideal or it is not known, if they are ideal or 
not. One aim here is to compare the flow regime in the aquifer near ideal and non-ideal wells. 
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Figure 1. Schematic illustration of 2D model region and boundary conditions 

 
The model concerns flow within the aquifer only, not in the borehole itself. The vertical boundary on the 

left is thus located at the wall of the well. The connection between aquifer and well is given at the filter, where 
we assume a constant mass pumping rate N0. For constant head pumping tests a constant head boundary has to 
be prescribed (Chang et al. 2011). An impermeable layer underlies the aquifer, so that no flow conditions can be 
assumed at the bottom. At the upper boundary leakage is represented by a Cauchy boundary condition with 
external hydraulic head h0 and conductance 1/c, where c denotes leakance time. In case of zero leakage this is 
identical to the no flow condition. At the right boundary a Dirichlet condition is specified, representing no 
vertical fluxes. For the unconfined situation we allow changes of the boundary location at the top of the model 
and on the left at the well boundary above the filter. At both boundaries only vertical movements are allowed. 
On the left side these are realized by roller boundary conditions. Table 1 lists all reference case parameters for 
the confined and leaky cases. 
 
Table 1. Parameters of the reference case 
Name Expression Value Description 
r0 0.15[m] 0.15 m well radius 
L 300[m] 300 m reach 
h0 52[m] 52 m initial head 
H 50[m] 50 m aquifer thickness 
K 3*10-4[m/s] 3E−4 m/s hydraulic conductivity 
T K*H 0.015 m²/s transmissivity 
θ 0.25 0.25 porosity 
ρ 1000[kg/m3] 1000 kg/m3 water density 
Sp 0.5*10-7[1/Pa] 5E−8 1/Pa compressibility 
Ss Sp*g*ρ 4.9033E−4 1/m specific storativity 
S Ss*H 0.024517 storativity 
D K/Ss 0.61183 m²/s diffusivity 
c§ 107[s] 1E7 s deGlee leakance time 
λ§ sqrt(T*c) 387.3 m leakance 
bf 0, 25, 37.5[m] 0, 25, 37.5 m filter bottom (ideal well and variants) 
tf 50[m] 50 m filter top 
Q 0.02[m3/s] 0.02 m³/s pumping rate 
q -Q/2/π/r0/(tf - bf) −5.3065E−4 m/s pumping velocity (ideal well) 
N0 q*ρ −0.53065 kg/(m²·s) mass pumping rate 
zo bf + (tf - bf)/2 25 m observation well depth (ideal well) 
ro2 r0+10[m] 10.15 m observation well 1 distance 
ro3 ro2+10[m] 20.15 m observation well 2 distance 

§ for a leaky aquifer  
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The model is based on equation (3) for the confined case, and on equation (2) for the unconfined case. The 

model region extends in horizontal direction from the well wall at position r0 to the reach of the well L. In 
vertical direction the origin is located at the base of the aquifer. The initial state is characterized by a constant 
head h0 and zero velocity. Starting from this steady state the model simulates a 48 h pumping period. g denotes 
the acceleration due to gravity. Three observation points are specified at distances r0, ro2 and ro3 from the origin. 
The depth zo of all observation points is the same.  

For the finite element discretization I chose quadratic elements on an irregular triangular mesh. The mesh is 
refined at the well screen, restricting the maximum element size to 10 cm.   
 
3. Results 
Figure 2 provides a 3D illustration of a typical result of a model run for the unconfined aquifer and a not ideal 
well. The well screen is located at the lower part of the aquifer. The colours indicate values of hydraulic head h 
at a given time instant after the start of the pumping test. The colours, described by the colorbar, show the rapid 
decrease of hydraulic head in the direct vicinity of the well screen. In the depicted state h decreases from the 
initial value of 10 m to a minimum of 8.27 m at the well screen. In the figure the upper surface represents the 
water table. The drawdown cone of the water table is clearly visible above the well screen. Selected streamlines 
are depicted in white. 3D arrows indicate the velocity direction. The size of the arrows is proportional to the 
absolute value of the velocity. As expected the velocity field has a maximum at the centre of the well screen. 
   

 
Figure 2. 3D representation of results of a 2D numerical model of an unconfined aquifer; depicted are cone of depression, 

distribution of hydraulic head, streamlines and velocity arrows 
 

In the following results are presented for the confined, leaky and unconfined aquifers, and parameters from 
Table 1. For each of the three cases a sensitivity study is performed using parametric sweeps with variations of 
the well screen bottom bf as parameter. bf takes the values shown in Table 1. The three values represent an ideal 
well and two not ideal wells with filter lengths of half and quarter of the initial aquifer thickness.    
 
3.1 Confined Aquifer 
Figure 3 depicts the drawdown in the pumping well and at both observation wells as function of time for the 
reference case. The figure shows the drawdown time series of three model runs of the parametric sweep at three 
different locations. One location is in the pumping well itself; the others are located at positions ro2 and ro3 at 
distances 10 and 20 m away from the borehole. In addition grey markers indicate the analytical solution 
according to formula (5). The shown cases have the same pumping rate; thus for all of the three well 
constellations there is only one analytical solution. 

For the fully penetrating case the analytical and numerical solutions are almost identical. Small deviations 
can be observed for small simulation times, most pronounced in observation point 2, which is furthest away from 
the pumping borehole. These deviances result from the inaccuracy of the analytical solution for small times, as 
mentioned above. However, for the partially penetrating cases the drawdown is significantly higher than for the 
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fully penetrating case. If the well screen measures only a quarter of the aquifer thickness, the drawdown within 
the well is approximately 4 times higher than for the ideal well. The analytical solution is in no way representing 
the drawdown anymore. In absolute values the deviation between 1D and 2D solutions decrease with distance 
from the well. The relative error remains the same, as the drawdown also decreases with radial distance. 
 

 
Figure 3. Drawdown as function of time in the pumping well and two observation points for fully, half and ¼ penetrating 
wells in a confined aquifer; 2D numerical solution in colour with markers, 1D analytical solution (Theis) indicated by grey 

markers 
 
3.2 Leaky Aquifer 
For the leaky aquifer a Neumann boundary condition is introduced at the top of the model region. The model is 
run with the parameters of the reference case, given in Table 1. For three values of filter bottom the drawdown at 
the three locations in the pumping and observation wells is depicted in Figure 4. Grey markers indicate the 
corresponding analytical solution according to formula (7). The cases shown have the same pumping rate; thus 
there is only one analytical solution for all well constellations. 
 

 
Figure 4. Drawdown as function of time in the pumping well and two observation points for fully, half and ¼ penetrating 
wells in a leaky aquifer; 2D numerical solution in colour with markers, 1D analytical solution (Hantush) indicated by grey 

markers 
 

As for the confined aquifer for the fully penetrating well numerical and analytical results match with the 
same exceptions for small simulation times and far distances of the observation well. Again, for the partially 
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penetrating cases the drawdown is significantly higher than for the fully penetrating case. If the well screen 
measures a quarter of the aquifer thickness, the drawdown within the well is approximately 4 times higher than 
for the ideal well. As in the confined case, the analytical solution is in no way representing the drawdown 
anymore, if the well is not ideal.  
 
3.3 Unconfined Aquifer 
For the unconfined case some parameters from the reference case had to be adjusted. As there is a varying 
aquifer thickness, transmissivity is not defined, and a hydraulic conductivity K has to be used instead of a 
transmissivity and the specific Ss instead of the storativity. The model is based on differential equation (2).  

For three values of filter bottom used in a parametric sweep Figure 5 depicts the drawdown at the three 
locations in the pumping and observation wells. Grey markers indicate the corresponding analytical solution for 
the confined case according to formula (4). The cases shown have the same pumping rate; thus there is only one 
analytical solution for each well constellation.  

As the analytical solution is derived for the confined case it cannot be expected that numerical and 
analytical match in this case. In fact the drawdown is higher for the 2D numerical result, representing the 
unconfined situation. This is expected, as the available filter length is smaller in the unconfined case, more 
resembling the not ideal wells treated before.    

As for the previous cases for the partially penetrating cases the drawdown is significantly higher than for 
the fully penetrating long screen. If the well screen measures a quarter of the aquifer thickness, the drawdown 
within the well is again approximately 4 times higher than for the ideal well. As in the previous cases the 
analytical solution is in no way representing the drawdown anymore, if the well is not ideal. 
  

 
Figure 5. Drawdown as function of time in the pumping well and at two observation points; 2D numerical solution for the 

unconfined case in colour with markers, 1D analytical solution for the confined case (Theis) indicated by grey markers 
 
4. Conclusions 
A numerical model is set up using COMSOL Multiphysics, simulating unsteady drawdown in an aquifer due to 
pumping. The model uses 2D cylindrical coordinates for modelling a vertical cross-section. The 2D results are 
compared with the 1D analytical solutions that are commonly used in pumping test evaluations. Numerical and 
analytical solutions coincide perfectly, if the conditions for the validity of the analytical solutions are fulfilled. 
As the analytical solutions are derived for fully penetrating wells in confined or leaky aquifers, they are not valid 
for partially penetrating wells or unconfined aquifers. The 1D analytical solution cannot represent the 2D flow 
patterns in the vicinity of the well. In contrast the numerical solutions can do the job. The model runs show 
clearly that the 1D solutions become invalid, when the well is not ideal. If the well screen is cut by a factor of 
half, the drawdown increases roughly by a factor of 2, indicating inverse proportionality. 

The presented numerical approach for confined and leaky aquifers is extended to simulate drawdown due to 
pumping in unconfined aquifers. In the model the water table is then conceived as a free boundary. The exact 
position of the free boundary is a result of the computations. In COMSOL Multiphysics this is performed using 
the moving mesh ALE mode. Results of the 2D models show how much the drawdown calculated for the 
unconfined case deviates from the confined case.    
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Concerning pumping tests the proposed modelling approach can account for   

• fully and partially penetrating wells  
• confined, leaky and unconfined aquifers 
• anisotropy 
• various far field boundary conditions 
• skin-zone effects (as in Huang et al. 2015) 
• constant rate or constant head pumping tests (as in Chang et al. 2011)  
• changing pumping rates 

Due to the paper limitations the focus here lied on the first two items. It can be concluded that COMSOL 
Multiphysics offers all options to model pumping tests taking various specific and local circumstances into 
account. In connection with an optimization module the proposed model approach can be used to evaluate 
pumping tests for general situations, not restricted to idealized conditions as in most commonly applied 
evaluation tools. For the optimization one may use a MATLAB module or the COMSOL Multiphysics toolbox 
concerning this matter. Development in this direction is in progress.    
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