Studying the Scattering of Electromagnetic Wave by a Composite 3D Model at Terahertz Frequencies

Mayuri Kashyap ${ }^{1}$, Aparajita Bandyopadhyay ${ }^{2}$ and Amartya Sengupta ${ }^{3}$

1. University of Queensland - Indian Institute of Technology, Delhi Academy of Research (UQIDAR), India
2. Joint Advanced Technology Center, Indian Institute of Technology Delhi, New Delhi, India
3. Department of Physics, Indian Institute of Technology Delhi, New Delhi, India.

INTRODUCTION:

Figure 1:
Scattering of EM wave by irregular particle. Resultant intensity is attenuated due to scattering of light in random direction and absorption by particle.

Scattering based on size parameter, a (ratio of scatterer size to wavelength)

- Most of the rigorous theoretical scattering solutions deal only with regular geometrical patterns.
- COMSOL Multiphysics ${ }^{\circledR}$ provides a flexible and reliable platform to model such compound 3D structures, aiding to understand the scattered field behaviour.

COMPUTATIONAL METHOD:

Table 1: Simulation Model Structures and Description-Model 1. For base,
height $=0.1$, radius $=0.12$; for hemispheres, radius $=0.03$; Dimensions are in mm . (

Freq ($\mathrm{THz}^{\text {) }}$	0.2	0.6	1
RI: Leaf	$1.50+0.50 i$	$1.45+0.45 i$	$1.40+0.40 i$
RI: Trichome	$1.45+0.45 i$	$1.40+0.40 i$	$1.35+0.35 i$
Table 2: Rls for Models 1-c, 2-a, 2-b, 2-c			

RESULTS:

Figure 4: Effect of embedded hemispheres on scattering pattern. At 0.2 THz , far field (FF) pattern for geometry in a) is given in b). c) FF Pattern for Model 1-b;
FF at b) is more uniform

For lower freq., forward scattering is comparable to backscattering; data can be acquired in reflection or transmission mode.

For higher

 frequencies, the SCA increases and high forward scattering is observed; data to be acquired in reflection mode.For same frequency, scattering is significantly large for larger structures.

CONCLUSIONS:

- We have identified the frequency range for which data needs to be taken in reflection or transmission mode for optimal results.
- Model is relevant for other typical biological samples (leaves, petals, skin, etc.), common chemicals, food samples, patterned semiconductor heterostructures.

REFERENCES:

1. H. C. van de Hulst, Light Scattering by Small particles, Dover, 1981
2. Fabrizio Frezza, Fabio Mangini, and Nicola Tedeschi, Introduction to electromagnetic scattering: tutorial, J. Opt. Soc. Am. A 35, 163-173, 2018.

ACKNOWLEDGEMENTS:

1. Defence Research and Development Organization (DRDO) vide Grant \# DFTM/03/3203/M/JATC.
. Department of Atomic Energy- Board of Research in Nuclear Sciences (DAE-BRNS) vide Grant \# 37 (3)/14/01/2016-BRNS/37015
