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Abstract: This work deals with the computer 
simulation of the blood flow, the arterial wall 
deformation and their 3D bidirectional 
interaction, including initial stresses and root 
displacements. The flow is laminar and steady 
with flexible walls modeled with a hyperelastic 
Demiray material model. Poiseuille formula is 
used to check the bidirectional interaction. 2D 
axisymmetric and full 3D models have been 
used and some considerations are made to the 
weak contribution of the boundary  load interface. 
Initial stresses consider the fact that geometric 
dimensions corresponds to in vivo measured 
arteries, normally under diastolic pressure. 
Cylindrical components have to be converted 
to Cartesian at each point, being necessary to 
generate new variables to add to the regular 
hyperelastic stress components. This way of 
deformations are realistic and not extremely 
large. Finally, upper aorta is modeled as a torus 
with 3 cylinders (ramifications) and reasonable 
results are obtained. 
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1. Introduction 

 
It is well known that cardiovascular function 

is characterized by, among other factors, a 
number of biomechanical indices and parameters 
such as the wall shear stress, that may be useful 
in the early characterization of degenerative 
arterial disease. Likewise, some clinical studies 
highlight the need for new hemodynamic indices 
which can come from an accurate interpretation 
of the biomechanics. Basic research is needed 
in order to improve our understanding of blood 
flow and the response of the arterial tissue. 
Experimental techniques, mathematical models 
and computer simulations, imaging and image 
analysis methods should provide a deeper 
understanding to be translated to clinical 
applications for the analysis, treatment or the 
prevention of diseases.   

 
Mechanical factors may be important in 

triggering the onset of aneurysms or 
atherosclerosis, the major cause of human 
mortality in the western world. An efficient 
constitutive description of arterial walls can 

improve diagnostics and therapeutic procedures, 
but blood velocity and pressure fields are 
influenced by the deformability of the vessel. 

  
This work deals with computer simulation of 

the blood flow, the arterial wall deformation and 
their 3D bidirectional interaction, including 
initial stresses and root displacements. 

 
2. Governing equations 
 

We assume that the blood is incompressible 
and Newtonian; the flow is laminar and steady, 
with flexible walls. Four PDEs (Navier Stokes 
and incompressibility) are the conditions that 
allow solving for the 4 fluid unknowns: the 3 
components of the fluid velocity and pressure, 
giving the pressure acting on the fluid-solid 
interface. 

 
We assume that the arterial walls are 

elastic but nonlinear, governed by the three 
equilibrium equations and one constitutive 
equation relating the pressure with volumetric 
deformation. Four PDE allow solving for the 3 
solid displacements components, and for the 
hydrostatic part of stress that is independently 
approximated to consider the solid to be nearly 
incompressible avoiding mesh locking. 

 
The integration of the weak form of the 

equilibrium equations is done on the initial 
undeformed domain V, using Piola II (S) as 
stress measure and Green (E) as deformation 
measure 
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where J is the volume ratio, and E and u are 
the test functions (virtual displacements). 

 
Piola stress S is obtained from a hyperelastic 

energy potential, composed of an isochoric and 
a volumetric part: 
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For the isochoric part we have used a 
Demiray material type:  
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Where I1 is the first invariant of the deformation 
and a and b are material constants: a is the 



initial elastic modulus and b shapes the traction 
curve, as is shown in fig 1.  
 

 
 

 

 

 

 

 

 

 

 

Figure 1. Traction curves for {a=30, 60 Kpa, 
with b=1}; and {b=1.1, 2.2 with a=30Kpa}. 

 
The isochoric potential is supplemented with 

a very stiff volumetric expression allowing 
cuasi- incompressibility: 
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Three Laplace PDE govern the movement 
of the fluid mesh, being Dirichlet boundary 
conditions the solid displacements at the 
interface. 

  
After discretization with n non Dirichlet 

nodes we will have to solve a nonlinear 
problem with 11 x n coupled unknowns. This 
can be done in a full coupled way or in a 
segregated one dividing the unknowns by groups 
being the second method more convenient for 
large meshes. 

 
When using the segregated method we have 

organized the unknowns in the 3 physical groups 
that are solved iteratively in this order: mesh- 
fluid-solid. Linear systems for the fluid unknowns 
are solved by iterative methods and directly for 
the solid and the mesh unknowns.  
 

3. Use of COMSOL Multiphysics  
 

 Comsol Model Library offers one example 
of one way 3D aorta interaction. In this study 
full bidirectional interaction is done, but some 
changes to the FSI interface have to be 
incorporate to obtain correct results. Initial 
stresses are also included in order to consider 
the fact that geometric dimensions corresponds 
to in vivo measured arteries, normally under 
diastolic pressure. 

 
3.1 Validation on a cylinder. Poiseuille flow 

adaptation to the deformation. 
 

Poiseuille analytical formula for the viscous 
laminar flow in a circular pipe: 
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Where G is the pressure drop per unit length, R 
is the radius and  the dynamic viscosity, is a 
good way to check the bidirectional interaction: 
the fluid pressure increases the pipe diameter 
in one way, and vice versa the flow velocity 
adapts to the deformation. With this aim we 
have go through the following steps: 
 

3.1.1 Laminar flow interface 

 

           Both 2D axisymmetric and full 3D 
models can be used for this problem. Figures 1 
and 2 show similar results adjusting well to the 
parabolic velocity profile. Results have been 
obtained for a pressure outlet condition of 100 
mmHg ( Pa) and an inflow inlet condition 
incremented in 2 Pa/cm. Viscosity is 0.005 
Pa.s, density 960 kg/m3 and the radius is 2 cm. 
P2 + P1  rectangles and hexahedral have been 
used with streamline stabilization. 
 

 
 

Figure 2. Velocity profile for axisymmetric model. 
Analytical and numerical results with rectangular 
elements. 
 

 
Figure 3. Velocity profile for ·3D model. Analytical 
and numerical results with hexahedral elements. 
 

3.1.2. - Structural mechanics interface: 

cylinder under internal pressure 

 
Wall thickness is 2 mm and Demiray 

material is used with a=1e5 Pa and b=0.844   
(ref3) corresponding to experimental data for a 



young male. Rollers are used as boundary 
conditions for the two extremes of the 
cylinder, and zero displacements are applied 
on lines of symmetry to avoid rigid movements.  

 
Weak contribution of the pressure boundary 

load is done in the material frame and the ratio 
da/dA of the integral is considered with the 
ratio dvol_spatial/dvol in the weak expression. 
Figs 3 and 4 show similar deformations 
computed in the 2D axisymmetric model and 
the full 3D with a maximum displacement 
(opening) of 3.34 mm (a=3e5 Pa, rectangle and 
hexahedral quadratic elements.). 

 

 
Figure 3. Axisymmetric model deformation. 
 

 
Figure 4. 3D model deformation. 
 

3.1.3 FSI interface. 

 
This interface contains the needed tools 

from the laminar interface and the structural 
mechanics as well as from the deformed mesh 
interface that couples both previous modes. 
With previous data the 2D axisymmetric ale 
problem gives the same deformation: 3.34 mm 
for the maximum radial displacement but the 
3D ale model gives 4.28 mm. 

The FSI interface integrates the domain 
fluid weak expression in the spatial frame as 
the laminar flow interface, the domain solid 
weak expression in the material frame as the 
structural mechanics interface, and the weak 
contribution of fluid-solid interface boundary 
load, given by the fluid, in the spatial frame, 
but retaining the factor  dvol_spatial/dvol  as in 
the weak contribution of the pressure boundary 
load of the structural mechanics interface. In 
our opinion this factor should be removed 
now, at least for this problem, and indeed, once 
removed 3.34 mm are again obtained for the 
maximum radial displacement. 
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Now the full interaction works well and the 

computed velocity adapts properly to the 
theoretical Poiseuille profile with the deformed 
diameter, as fig 6 shows:   

 

 
Figure 5. Mesh for the fluid and the solid. 

 

 
Figure 6. Velocity profiles before and after 
deformation, Analytical and numerical results. 
 
Convergence is achieved in an incremental way, 
starting with a very stiff material a100a, and 
advancing trough the sequence {100, 10, 8, 6, 4, 3, 
2, 1}.Anyway, pressure results degrade after 3a 
because inflow inlet condition works poorly for 
openings greater than 3.34 mm (in this problem). 
Switching than to a pressure condition for the inlet 
(specified as oulet-pressure) you have correct pressure 
but you lose precision in the maximum velocity of 



the parabolic profile. This is a fluid problem that 
also happens with rigid walls and it can be improved 
with finer hexahedral meshes and using P1+P1 
discretization without stabilization or finer tetrahedral 
meshes using P2+P1 with streamline stabilization. 
 
3.2 Initial stress:  
 

Realistic aorta geometries are constructed 
from medical images obtained with angiographic 
methods or TACs in vivo, normally under 
diastolic internal pressure. It is then necessary 
to consider as initial stresses the existing stress 
in equilibrium with the geometry. This way 
stress increments from diastole to systole are 
correctly considered, not overestimating 
deformation increments as can be seen in fig.7. 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Traction curve for an arterial tissue 
showing the characteristic stiffening with deformation 
 

Initial stresses is a solid feature that is 
handled in the structural mechanics interface. 
Elastic material implements a specific section 
to define initial stresses in Cartesian coordinate, 
but hyperelastic material does not, and it is 
necessary to define new variables for the initial 
stress components and add them up to the 
regular stress variables deduced from the strain 
energy potential. All this has been done in the 
structural mechanics interface. 
 

In our problem, initial stresses have been 
estimated with the thin wall formulas for the 
cylinder under internal pressure. 
 

3.2.1 Cylinder: 2D axisymmetric and full 3D 

models.  
  

Initial stresses in cylindrical coordinates 
have been considered as follows (longitudinal 
cylindrical axis coincides with Cartesian y 
axis. 
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Boundary conditions for the 2 extremes of 
the cylinder are rollers, and only circumferential 
stress component has been considered. This 
stress tensor is valid for the axisymmetric 
model, but it has to be converted to Cartesian 
components for the 3D model in the following 
way: 
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Fig 8 shows the results obtained for the 

axisymmetric model. Internal pressure of 80 
mmHg has been considered, with Demiray 
material (a = 1e5 Pa, b = 0.844). 
 

 
Figure 8. Only initial stress, only internal 
pressure, both simultaneously. 
 

Fig 9 compares the results obtained for 120 
mmHg internal (systolic) pressure, without and 
considering initial stresses for 80 mmHg. 
 

 
Figure 9. Considering initial stresses and not 
considering. 
 

Similar results are obtained for the full 3D 
model. 



3.2.2 Torus:   

 
The torus geometry is one step further 

towards the upper aorta geometry. The major 
radius is ˆ 3.9 cmR  , the minor 2 cm and the 
thickness 2 mme  . As in the cylinder case, the 
median longitudinal plane of the torus is the xy 
plane of symmetry. Boundary conditions for 
the two extreme of the torus are rollers and 
zero displacements are applied on lines of 
symmetry to avoid rigid movements. 

 
Longitudinal initial stresses are now 

considered, together with the circumferential 
ones. As before, cylindrical components are 
transformed to Cartesian. Given a point (x, y, z), 
 is the projection on the xy plane of the 
distance to the origin (center of the torus) and r 
is de distance from the point to center of the 
plane section that contains the point. Then: 
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Fig 10 shows the expansion of the torus 
when only subjected to internal pressure of 100 
mmHg. Fig 11 shows the contraction when the 
torus is only subjected to corresponding initial 
stresses. When both are together consider, the 
effects compensate and final deformation is 
practically null.  
 

 
Figure 10. Expansion of the torus under internal 
pressure. 

 
Figure 11. Contraction of the torus with only 
initial stresses. Magnification factor is 5. 
 

Finally the whole picture including fluid 
flow and initial stresses has been studied with 
the FSI interface.  

 
 
 
 
 
 
 
 
 

Figure 12. Mesh for the fluid and the solid. 
 
Now symmetry respect the central section 

of the torus is lost, due to the action of the 
fluid, and the inlet section has to be fixed to 
avoid rigid movements. Fluid and solid data 
are the same as previous cases but now a =1e5 
Pa can be considered, because inlet section 
does not deform and does not limit the correct 
behavior of the pressure inflow inlet condition.  

 
Fig 13 and 14 show the influence of using 

or not initial stresses. The fluid outlet pressure 
corresponds to 120 mmHg (systole) but the 
geometry and initial stresses correspond to 80 
mmHg (diastole). 
 

 
 

Figure 13. Pressure and deformation at the 
fluid-solid interface for 120 mmHg without 
initial stress. 



 

 
 

Figure 14. Pressure and deformation at the 
fluid-solid interface, for 120 mmHg with initial 
stresses corresponding to 120 mmHg. 
 

Pressure precision deteriorates when using 
inflow inlet boundary condition with curved 
pipes. This can be arranged switching to pure 
pressure inlet condition (specified as outlet-
pressure) but velocity results can be more 
instable. 

 
3.2.3 Torus with 3 ramifications 

 

This case is a combination of previous ones. 
Ramifications are modeled as vertical cylinders 
whose initial stresses have already been 
described. Nevertheless 4 hyperelastic materials 
have to be implemented in order to declare the 
needed additional variables for initial stresses 
computations: one for the torus and one for 
each ramification. The 3 are vertical but in 
different x position. It works as can be seen in 
next figures. 
 

4. - Upper aorta results.  

 
Upper aorta is modeled using the previous 

torus and 3 vertical ramifications. 

 
Figure 15. Mesh for the fluid and the solid. 
 

Geometry, fluid and solid data as given in 
previous cases. Boundary conditions for outlet 
sections of the ramifications are rollers. Initial 
stresses are considered in all cases.  
 

Fig 16 corresponds to 80 mmHg geometry, 
initial stresses and internal pressure. Inlet 
pressure is 10700 Pa and outlet pressures are 
respectively: 10681, 10677, 10673 and 10670. 

 
Figure 16. Fluid velocity and solid deformation 
 

Fig 17 corresponds to 80 mmHg geometry 
and initial stresses, and 120 mmHg internal 
pressure. Inlet pressure is 16030 Pa and outlet 
pressures are respectively: 16011, 16007, 16003 
and 16000. 

 

 
 

Figure 17. Fluid velocity and solid deformation 
 

Finally we have modelled with the fluid-
solid interaction and the initial stresses, possible 
real movements of the root section, in particular 
a vertical displacement and a rotation (x axis).  
 

Fig 18 corresponds to a displacement of 
8.9 mm and a 12º rotation. Geometry and 
initial stresses correspond to 80 mmHg and 
internal pressure to 120 mmHg. 

 
    
 
 
 
 



 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 16. Frontal and upper view. 
 

5. - Conclusions 

 
A complex fluid solid interaction including 

initial stresses and root displacements seems 
possible to be simulated.  

 
This is a preliminary methodology that has 

been carefully validated in its basic steps, but 
more results have to be obtained and compared 
with real data of medical value. 

 
Initial stresses for hyperelastic material 

have been included, using intensively Comsol 
and user defined variables. 

 
Some considerations are made to the weak 

contribution of the boundary load interface of 
the FSI interface, which seems reasonable to 
obtain correct results.  
 
 
6. - References 

 
1. J. M. Goicolea Ruigómez, “Biomechanical 
Factors: Influence on Cardiovascular Function”, 
Revista Española de Cardiología, 2005 58:121-5. 
 
2. F.J. Calvo. “Simulación del Flujo Sanguíneo 
y su Interacción con la Pared Arterial”. Tesis 
doctoral, UPM, Madrid 2006. 
 
3. C. G. Herrera. “Comportamiento Mecánico 
de la Aorta Ascendente: Caracterización 
Experimental y Simulación Numérica”. Tesis 
doctoral, UPM, Madrid 2008. 
 
4. Carsten J. Beller, Michel R. Labrosse, et al, 
"Role of Aortic Root Motion in the 
Pathogenesis of Aortic Dissection”, Circulation 
2004, 109:763-769. 
 

5. Gianmarc Coppola and Kefu Liu, "Study of 
compliance Mismatch within a Stented 
Artery”, COMSOL conference 2008 Boston. 
 
6. Ryo Torii, Marie Oshima, et al, "Computer 
modelling of cardiovascular fluid-structure 
interactions with the deforming-spatial-
domain/stabilized space-time formulation", 
CMAME 195 (2006) 1885-1895. 
 
7. M. A. Esteves, "Modelos computacionales 
de Interacción Fluido Estructura con Aplicación 
a la Circulación Sanguínea", Proyecto Fin de 
Máster, UPV/EHU.2011  
 
 
7. Acknowledgements 
 
This research has been carried out within the 
framework of the project “Human aorta 
biomechanics: new models for computations 
and medical applications” supported by the 
I+D+I National Plan of the Spanish Ministry 
of Science and Innovation. 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 


	conference-button: 


