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Vanadium Redox Flow Battery 

• Advantages: 

– Decoupled power and energy ratings 
• Power rating (kW) ~ Size  of Cell 
• Energy rating (kWh) ~ Volume of Electrolyte 

– Large cycle life: 12,000+ cycles 
– Limited self-discharge 
– Low Maintenance  

• Disadvantages: 

– Low energy and power density 
• Energy density: 20 – 35 Wh/L 
• Power density: 25 – 100 W/L 
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Motivation 

 Less than 15 published models in the last 4 years 

VRFB 
i (A/cm2) 

Q (mL/s) 

ϕ (V) 

ci (M) 

Majority modeling efforts: Macroscopic, 2-D, and transient models 

• Poor experimental agreement 
 
 

 

• Ideal membrane assumption 
(no crossover)  
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Crossover is one of the key issues limiting the 

performance of vanadium redox flow batteries (VRFB) 
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Current Modeling: Membrane 
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Positive Electrolyte Negative Electrolyte 

1. Only H+ and H2O exist in membrane 
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2. Two transport mechanisms: Migration and Convection only 

Convection 

   Migration:  

In the membrane, current modeling efforts 
assume single ion (hydrogen) transport 



Real Scenario: Membrane 
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Proper models should account for all these physics 
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Positive Electrolyte Negative Electrolyte 

1. All species in electrolytes exist in membrane 
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2. All transport mechanisms: Migration, Diffusion, Convection 

3. Interfacial physics and side reactions 

   Migration:  

Convection 

    Diffusion:  c



Objective 
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1) Membrane 

2) Membrane/Electrode Interface 

3) Open Circuit Voltage 

Develop a comprehensive, 2-D, transient model which 
incorporates the proper membrane physics to accurately 
capture the crossover effect on charge/discharge cycling 

using COMSOL 

Main Components of Present Model 



Formulation: Membrane Convection 
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Real Scenario: Migration & Diffusion 
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Membrane|Electrolyte Interface 
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Migration Diffusion 
Zero Net 

Charge Transfer 

Diffusion will violate 
electro-neutrality 

Proton gradient facilitates 
diffusion into membrane 
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Membrane|electrolyte interface is key for proper coupling 

of electrode and membrane physics 



Interfacial Regions 
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• At interfacial region, concentration and potential change linearly 

− Junction Concentration 

• Two Regions • Additional Variables 

− Junction Potential 

1. Electrolyte Region 

2. Membrane Region 



Interfacial Thickness 
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• Electrode: 

 einterfacial thickness = diffuse boundary layer thickness 

Membrane Electrolyte Interface 
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• Membrane: me  

interfacial thickness = electrode interfacial thickness 
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Verification: Interfacial Case Study 
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Simplifications 

• Static cell  
• Zero current 
• Sulfuric acid only 

• Approach: Develop a simplified case study & solve for equilibrium 
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?

• Verification at Equilibrium Conditions 



Verification: Interfacial Case Study 
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Formulation: Crossover 
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• Instantaneous side reactions in the electrolyte interfacial region 

Crossed over 
species 

Electrolyte 
reactant 

Electrolyte 
product 

• Vanadium species (V+2, V+3, V+4, V+5) crossing over through the 
membrane initiate side reactions. 
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Formulation 
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Open Circuit Voltage 

& 

Electrode Structure 



Open Circuit Voltage 

Common Issue:  

– Observed discrepancy between 
theoretical and experimental 
voltage 
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– Originates from inaccuracy of 
calculated OCV in models Standard Nernst Equation: 

• e.g., 130 to 140 mV difference 
between predicted and measured 
VRB performance 

-   Typical implementation of the 
Nernst equation does not account 
for all electrochemical phenomena 
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Extended Nernst Equation 

Initial concentrations: Negative - 2M V3+ and 6M H+ 

                                       Positive - 2M VO2+ and 4M H+ 
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Validation 
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Operating Conditions 

 Half-cell volume: 30 mL 

 Vanadium concentration: 1.5 M 

 

Current:  0.4 A 

 Cell size: 5 cm2 



Results: Reaction Current Density 
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Reaction is concentrated near current collector 

Current (A m-2): Charging at 50% state of charge 



Results: Current Density 
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Able to track variations in current 

density throughout the cell 
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Results: Hydrogen Proton Distribution 
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H+ transport across the membrane is higher than the 

production in the electrode caused by the reaction  

Concentration (mol m-3): Charging at 50% state of charge 

Maximum concentration due to 

reaction near current collector 

Inlet Conc: 5064.6 mol m-3 

Outlet Conc: 5063.5 mol m-3 
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Results: Distributions in Membrane 

H+ Concentration (mol m-3) HSO4
- Concentration (mol m-3) 
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Results: Membrane Concentration 

Net Flux % convection % diffusion % migration 

Charging -6.72 x 10-3 26.0% 8.0% 66.0% 

Discharging 6.65 x 10-3 25.4% -5.2% 79.8% 

H+ Flux in membrane (mol m-2 s-1) 

Net Flux % convection % diffusion % migration 

Charging -8.28 x 10-5 94.8% 2.7% 2.5% 

Discharging 7.42 x 10-5 101.1% -4.3% 3.2% 

 V4+ Flux in membrane (mol m-2 s-1) 

Migration of protons generates electro-osmotic convection 

which governs direction of vanadium flux in the membrane   

102 greater than vanadium flux 
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Conclusions 
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• A new model is developed to account for multi-ionic 
transport through the membrane  

• A framework for the membrane|electrolyte interface 
was defined to couple the species transport in the 
membrane with the electrode 

• Simulated results agreed well with experimental data 
without the need for a fitting voltage (via use of 
extended Nernst equation) 

• The model can predict transient performance and 
spatial distributions of species concentration, 
potentials, reactions in the membrane and electrode 
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