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« Advantages:
— Decoupled power and energy ratings
« Power rating (kW) ~ Size of Cell
« Energy rating (kWh) ~ Volume of Electrolyte
— Large cycle life: 12,000+ cycles
— Limited self-discharge
— Low Maintenance
« Disadvantages:
— Low energy and power density
« Energy density: 20 — 35 Wh/L
« Power density: 25 - 100 W/L




Crossover is one of the key issues limiting the
performance of vanadium redox flow batteries (VRFB)

Q Less than 15 published models in the last 4 years

Current: i (Alcm?) ———» — ¢ (V)

Flow Rate: Q (mL/s)

Majority modeling efforts: Macroscopic, 2-D, and transient models

* Poor experimental agreement Restricted to single
charge/discharge cycle

* |deal membrane assumption

(no crossover) \ Simplified membrane
performance




In the membrane, current modeling efforts

assume single ion (hydrogen) transport

HIEIEIERE
1. Only H* and H,0 ¢xidt I mefnigrans
(OF g Qll~=2 )
=1 s ||=[l ==L+ .
2. Two transportmegtzanigms: M@rat@m and Convection only
- - prd =~ ~ ~ -
Negative Electrolyte Membrane Positive ETectronte

Flow Rate

< Migration: V ¢ >

< Convection >

<——20

V4+
V5+
«—| H"

HSO;

Flow Rate




1. All species in electrolytes exist in membrane

2. All transport mechanisms: Migration, Diffusion, Convection

3. Interfacial physics and side reactions
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Proper models should account for all these physics




Develop a comprehensive, 2-D, transient model which
Incorporates the proper membrane physics to accurately
capture the crossover effect on charge/discharge cycling
using COMSOL

Main Components of Present Model

1) Membrane

2) Membrane/Electrode Interface

3) Open Circuit Voltage
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Membrane|electrolyte interface is key for proper coupling
of electrode and membrane physics
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At interfacial region, concentration and potential change linearly

O

« Two Regions  Additional Variables

1. Electrolyte Region — Junction Concentration

2. Membrane Region — Junction Potential
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« Electrode:
interfacial thickness = diffuse boundary layer thickness (56)

« Membrane: 55=5"
interfacial thickness = electrode interfacial thickness
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* Verification at Equilibrium Conditions
« Does simulated potential jump equal the Donnan Potential?

? e
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« Approach: Develop a simplified case study & solve for equilibrium

dE_, «—— Equilibrium
dt =0 condition in cell

Simplifications

« Static cell

« Zero current

« Sulfuric acid only




¢; Distribution at Cross-section

Directly from
simulated potentials
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 Instantaneous side reactions in the electrolyte interfacial region

Crossed over
species
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« Vanadium species (V*2, V*3, V*4 V*5) crossing over through the
membrane initiate side reactions.
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Open Circuit Voltage
&
Electrode Structure



Common Issue:

— Observed discrepancy between
theoretical and experimental
voltage

*e.g., 130 to 140 mV difference
between predicted and measured
VRB performance

Reason for Deviation:

— Originates from inaccuracy of
calculated OCV in models

- Typical implementation of the

Nernst equation does not account

1.7
16 -

¢ Experimental QCV [6]
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Standard Nernst Equation:
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for all electrochemical phenomena
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Knehr, K. W. and Kumbur, E. C., Electrochemistry Communications, 13 (2011) 342



Donnan Potential Proton Contribution

RT Coor "G 2 c . -c, ec"™\lc.
E=E,+——In| L L G CEA )
nF CVO2+ .CV3+ F CV02+ .CV3+ .CH+

Initial concentrations: Negative - 2M V3* and 6M H*
Positive - 2M VO?* and 4M H*

Knehr, K. W. and Kumbur, E. C., Electrochemistry Communications, 13 (2011) 342
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Operating Conditions

Half-cell volume: 30 mL Current: 0.4 A
Vanadium concentration: 1.5 M Cell size: 5 cm?

P. Qian et. Al.., J. Power Sources, 175 (2008) 613



y(cm)
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Current (A m2): Charging at 50% state of charge

| Reaction is concentrated near current collector \
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Average Current Density (Am-)
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Maximum concentration due to
reaction near current collector \

Negative Electrode Positive Electrode

Qutlet Conc: 5063.5 mol m-3

7

O
S

— 2
g S
~..>.:1.5 GE.)
1 =

3. .' .' .’ 1 \
x(cm)
Concentration (mol m-3): Charging at 50% state of charge

H* transport across the membrane is higher than the
production in the electrode caused by the reaction
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V4t Flux in membrane (mol m-2 s?)

Net Flux % convection | % diffusion | % migration
Charging -8.28 x 105 94.8% 2.7% 2.5%
Discharging 7.42 x 10°° 101.1% -4.3% 3.2%
H* Flux in membrane (mol m-2 s-1)
Net Flux | % convection | % diffusion | % migration
Charging -6.72 x 103 26.0% 8.0% 66.0%
Discharging|| 6.65x 103 25.4% -5.2% 79.8%

102 greater than vanadium flux

Migration of protons generates electro-osmotic convection
which governs direction of vanadium flux in the membrane




A new model is developed to account for multi-ionic
transport through the membrane

A framework for the membrane|electrolyte interface
was defined to couple the species transport in the
membrane with the electrode

Simulated results agreed well with experimental data
without the need for a fitting voltage (via use of
extended Nernst equation)

The model can predict transient performance and
spatial distributions of species concentration,
potentials, reactions in the membrane and electrode




« Extensive experimental validation
« Parametric study of extended charge/discharge cycles

« Performance simulations for multiple membrane
materials and electrode microstructures
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