

# Modeling Interplay Between Catalyst Performance and Microenvironment in CO<sub>2</sub> Electrolyzers

Dr. David Raciti<sup>1</sup>, Dr. Trevor Braun<sup>1</sup>, Heng Xu<sup>2</sup>, Dr. Mutya Cruz<sup>2</sup>, Prof. Benjamin Wiley<sup>2</sup>, Dr. Tom Moffat<sup>1</sup>

<sup>1</sup> Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899

<sup>2</sup> Department of Chemistry, Duke University, Durham, NC 27708

Contact: dmr5@nist.gov



# Broad Outlook: Electrochemical CO<sub>2</sub> Reduction to Replace Fossil Fuels

- Fossil fuels and anthropologic CO<sub>2</sub> emission
  - Not sustainable
  - Environmental consequences
- Many renewable energies are intermittent
  - e.g. Solar/wind electricity
  - Energy Source
- Store intermittent energy in chemical bonds
  - $xCO_2 + ne^- + yH \rightarrow C_xH_yO_z + mOH^-$
  - Protons from H<sub>2</sub>O equals OH<sup>-</sup> at cathode
  - Competition from 2H+ -> H<sub>2</sub> reaction
    - $\,\circ\,$  Can also come from  $\rm H_2O$
- Diffusivity of CO<sub>2</sub> in solution is another barrier
  - 1.9E-9 m<sup>2</sup> s<sup>-1</sup> in liquid phase
  - 1.7E-5 m<sup>2</sup> s<sup>-1</sup> in gas phase
  - Also, CO<sub>2</sub> reacts with OH<sup>-</sup>, acid-base reaction





### MATERIAL MEASUREMENT LABORATORY

Stites & Associates, LLC. (SALLC) Olah et al., J. Am. Chem. Soc. 2011, 133, 12881. 4th International Conference on Advances in Energy Research 2013



# Increasing Mass Transfer of CO<sub>2</sub>....Studying CO<sub>2</sub> Electrolysis in a Gas-Diffusion Electrolyzer

- Moves the bulk of CO<sub>2</sub> transport to the gas phase
  - Gas phase diffusion coefficient of CO<sub>2</sub> is ≈10000x greater than the liquid phase.
  - Enables high CO<sub>2</sub> mass transport
- The boundary layer of this system is minimized by the active flow of electrolyte over the catalyst.
- Several fold enhancement in current density observed experimentally.







### MATERIAL MEASUREMENT LABORATORY

Kim et al. *J. Power Sources* **2016**, *312*, 192-198. Ma et al. J. Electrohem Soc. **2014**, *161*, F1124-31.

# Model Construction: Simulating Ag Nanowire Array on PTFE based GDL

Experimental system: 1-D Ag nanowires on a PTFE GDL (a)

- Non-conductive GDL = current produced only from Ag
- (b) Interwoven network of Ag = self-conducting
- (c) Layer thickness measured by cross-section image
- System can be broken into 2 domains, 3 bounds (e)
  - Assuming random isotropic nature of system we assume 1-D will capture the average behavior.
  - Bound 1: Gas Channel to GDL
    - Gas concentration based on gas channel
  - Domain 1: PTFE Gas-diffusion layer
    - Only gas and solid phases....no flooding
  - Bound 2: GDL with Ag catalyst-layer
    - Gaseous species exchange
  - Domain 2: Ag nanowire catalyst layer
    - Assume complete flooding due to hydrophilicity of Ag nanowires
      - Only liquid and solid phases
    - Conductivity measurements determined potential drops across Ag nanowires
  - Bound 3: Catalyst Layer with Bulk Electrolyte
    - Mass Transfer across bound follows Sherwood-Reynolds-Schmidt Correlation







### MATERIAL MEASUREMENT LABORATORY

Weng et al. *PCCP* **2018**, *20*, 16973-84. Raciti et al. *Nanotechology* **2018**, *29*, 044001.

## **Model Overview: Physical Phenomenon/Equations**

- PTFE Gas-Diffusion Layer
  - Gaseous species transport
    - Mixture-averaged model
    - Porous media transport
  - Darcy's Law
- Ag Nanowire Catalyst Layer
  - Liquid Species Transport
  - Homogenous Acid-Base Reactions
    - Electrolyte: 0.5 M KHCO<sub>3</sub>
  - Tertiary Current Distribution
    - Nernst-Planck
    - Porous Electrode Coupling
      - Electrochemical Reactions
        - Concentration Dependent Tafel Kinetics





#### **Electrochemical Reactions**

$$CO_2(aq) + 2H_2O + 2e^- \to CO + 2OH^-$$
 (1)

$$2H^+ + 2e^- \to H_2(g) \tag{2}$$

$$2H_20 + 2e^- \to H_2(g) + 20H^-$$
 (3)

#### Weng et al. *PCCP* **2018**, *20*, 16973-84. Raciti et al. *Nanotechology* **2018**, *29*, 044001.



### **Comparing Model Results to Experimental Results**

- (a) Model underpredicts total current density at potential >-0.6 V and overpredicts it at <-0.5 V.</li>
- (b) Current efficiency between model and experiment are off >-0.8 V.
- (c) CO specific current density overpredicted at all potentials, but more so at the more negative potentials.
- (d) Hydrogen specific current density is underpredicted >-0.7 V and overpredicted <-0.7 V.</li>
- The prediction for HER is worse than CO<sub>2</sub>RR.
- Perhaps an alternative accessible reaction possible for H<sub>2</sub> production.
  - Electrolyte: 0.5 M KHCO<sub>3</sub>, pH = 8.9
  - Known buffer with 2 pKas: Could be source of protons at neutral to slightly basic pHs.





Raciti et al. in preparation



### **Model 2:** Other Possible Sources of H<sup>+</sup> for H<sub>2</sub> production?

 $HCO_{3}^{-} + 2e^{-} \rightarrow H_{2} + 2CO_{3}^{2-}$ 

New model with additional electrochemical reaction based on concentration dependent Tafel kinetics.

- Concentration component was modeled as:
  - $\circ$  [HCO<sub>3</sub>]/[HCO<sub>3</sub>+CO<sub>3</sub>]
    - Assumes [H<sub>2</sub>CO<sub>3</sub>] is negligible
- The activity coefficient was extracted from experimental data.
- We also used a tafel slope from experimental data to tune the CO<sub>2</sub> reaction.
- (a) Results predict total current at all potentials.
- (b) Faradaic efficiencies between model and experiment very similar.
  - Offset due to overpredicted H<sub>2</sub> evolution
- (c) CO specific current matches
- (d) HER overpredicted at all potentials now.
  - Competitive adsorption, slightly different kinetics for H<sub>2</sub> from HCO<sub>3</sub><sup>-</sup>, polarization effects at high overpotentials.



Goyal et al. JACS 2020, 142, 4154-61. Raciti et al. in preparation



### **Experimental Validation of New Electrochemical Reaction**

- Initial test case using cyclic voltammetry
  - e.g. quick acquisition time, but not steady-state.
    Likely to overpredict current density at potentials where mass transfer and other effects take hold.
- Isolate the HER reaction to nullify competitive adsorption
  - No CO<sub>2</sub> present
- Looking for characteristic HCO<sub>3</sub><sup>-</sup> depletion event
  - @ -0.7 V
- Event observed and current densities between theory and experiment much more similar when bicarbonate is included.





## Summary and Future Work: Continue to Improve the Model

- Model enabled observation that additional reaction pathway to produce H2 was accessible with the electrolyte chosen for the experiment.
- Inclusion of targeted pathways was validated via experiment.
- Future work includes:
  - Better representation of water splitting to H<sub>2</sub>.
  - Build in other components of total cell to accurately capture additional limitations like solution/membrane resistance.
- Acknowledgements go to:
  - The National Research Council for funding my postdoctoral work.
  - The National Institute of Standards and Technology for hosting me.
  - Collaborators at Duke University for the Ag
    nanowires: Heng Xu, Dr. Mutya Cruz and Prof. Wiley
  - Co-workers and Mentors at NIST: Dr. Trevor Braun and Dr. Tom Moffat



Thanks for your attention! Questions/Comments: dmr5@nist.gov

> The National Academies of





