Transient Analysis of the Buoyance Driven Flow in a Passive Solar System of Indoor Heating

G. Petrone, G. Cammarata, and L. Cammarata
Department of Industrial and Mechanical Engineering, University of Catania, Italy

This study aims to numerically investigate on a passive solar system for indoor heating called as \"Trombe wall\". The transient buoyancy driven flow characterizing that system and the thermal distribution are solved by numerically integrating the governing equations in COMSOL Multiphysics environment. Simulations are carried-out for a time range corresponding to 12 days. The results are summarized in motion fields and thermal maps, that are critically discussed together with phenomenological aspects concerning thermal efficiency of the storage system and comfort conditions inside the considered indoor environment.