Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Simulation of RTD in Contact Tanks with COMSOL Multiphysics

C. Gualtieri
University of Napoli

The objective of this paper is to present the results of a numerical study undertaken to investigate the hydrodynamics and turbulent transport and mixing inside two contact tanks, which have the same channels but different location of the baffles. Transient concentration data were used to derive the residence time distribution (RTD) function for both tanks in order to evaluate and compare ...

Simulation of Surface Stress Effect on Mechanical Behaviour of Silicon Microcantilever

A. Ricci, E. Giuri, and C. Ricciardi

Microcantilevers made of crystal silicon are probably the most diffused type of MEMS because of their simple fabrication and their vast applications. In this presentation we treat the mechanical behaviour of silicon mirocantilevers, and also give an overview of the many application areas that these apply to.

Modeling and Simulation in Bio-Electronics

M. Longaretti, G. Marino, and R. Sacco
Politecnico di Milano

In this communication, we deal with the numerical simulation of Voltage Operated ionic Channels (VOC) in Bio-Electronics. Suitable functional iteration techniques for problem decoupling and finite element methods for discretization are proposed and discussed. Model and computational procedures are validated in the simulation of a real-life VOC under several working conditions.

Thermal Dissipation of DIMM Modules in a Tower-BTX Configuration

G. Sorge, G. Cammarata, and G. Petrone
University of Catania

In this paper we study the natural convection for Dual In-Line Memory Module (DIMM) systems. Numerical models are developed using COMSOL Multiphysics. The results, obtained for imposed ambient temperature and operative conditions (power supplied to the CPUs) were produced and complex fluid motion field could be detected.

Optimization of BCP Processing of Elliptical Nb SRF Cavities

C. Boffo[1], C. Cooper[1], G. Galasso[2], and A. Rowe[1]
[1] FNAL, Batavia, IL 60510, U.S.A.
[2] Università degli Studi di Udine

Buffer chemical polishing is a cheap, simple and effective processing technique for single grain high gradient and polycrystalline lower gradient cavities. This paper describes the thermal-fluid finite element model adopted to simulate the process, the experimental flow visualization tests performed to verify the simulation and a novel device fabricated to solve the problem.

Modeling of a Preferential Oxidation Reactor in a LPG Hydrogen Generator for PEMFC

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

This paper presents a two dimensional model of a Preferential Oxidation Reactor. The main aim of the mathematical model was to investigate the process performance of the reactor by parametric analysis. Temperature and concentration profiles along the length of the reactor were evaluated in order to enhance optimization and control of the PROX unit.

A Two Dimensional Numerical Model for Multilayer Thin Films Irradiated by a Moving Laser

N. Bianco, O. Manca, and D. Ricci
Università degli Studi di Napoli

A numerical analysis of the conjugate optical-thermal fields in an amorphous silicon thin film deposited on a glass substrate and irradiated by a moving Gaussian laser source is carried out. The combined optical and thermal models are solved by means of COMSOL Multiphysics. Results are given for continuous and pulsed moving Gaussian heat sources and they are presented as temperature ...

Influence of Geometry on Mixing in a Passive Micromixer

E. Giuri, A. Ricci, and C. Ricciardi
Laboratorio di Technologie Elettrobiochimiche Miniaturizzate per l'Anilisi e la Ricerca, Politechnico di Torino

Finite Element Method simulations of microstructure behaviour is carried out by COMSOL. This enables us to make also technological considerations related to the easy way of fabrication and to lower production costs as explained in the following slide.

Reactor Design Improvements for a Propane Autothermal Reformer by Simulation of Momentum Flow

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

The paper presents a two-dimensional model to describe the gas flow in a propane autothermal reactor, developed at the CNR-ITAE Institute, and aimed to design a Beta 5 kWe hydrogen generator, named HYGen II, to be used with Polymer Electrolyte Fuel Cells (PEFCs) for residential applications. The main aim of the mathematical model was to optimize the reactor geometrical key parameters (diameter ...

Simulation of Electromagnetic Stirrers and Brakes Applied in the Metallurgical Field

C. Mapelli
Politecnico di Milano

The control of the flux within continuous casting systems used in the metallurgical field can be obtained through the application of electromagnetic. The model here has been solved through a linear time-harmonic solver. The results of the electromagnetic model have then been applied to the fluid-mechanics model through volume Lorentz forces.

Quick Search